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Abstract

This paper presents Sage, a functional programming lan-
guage with a rich type system that supports a broad range
of typing paradigms, from dynamically-typed Scheme-like
programming, to decidable ML-like types, to precise refine-
ment types. This type system is a synthesis of three general
concepts — first-class types, general refinement types, and
the type Dynamic — that add expressive power in orthogonal
and complementary ways.

None of these concepts are statically decidable. The Sage
compiler uniformly circumvents this limitation using hybrid
type checking, which inserts occasional run-time casts in
particularly complicated situations that cannot be statically
checked. We describe a prototype implementation of Sage
and preliminary experimental results showing that most or
all types are enforced via static type checking — the number
of compiler-inserted casts is very small or zero on all our
benchmarks.

1. Introduction

The design of an advanced type system typically involves
a difficult trade-off between expressiveness, complexity, and
static decidability. This paper describes the Sage program-
ming language and type system, which explores an unusual
yet rather promising point in this design space. Sage is a
purely functional programming language with a minimal-
ist design philosophy. It extends the three constructs of the
lambda-calculus (abstraction, application, and variable ref-
erence) with only three additional constructs. Yet within
this minimal syntactic core, Sage provides a sophisticated
type system that is quite expressive and flexible.

This combination of simplicity and power is achieved
by a synthesis of the following general concepts, each of
which extends the expressive power of the type system in
orthogonal and complementary ways. The expressive power
of these concepts means that none are statically decidable.
Sage uniformly circumvents this limitation via hybrid type
checking, described below.

First-Class Types. Sage eschews the term/type/kind
hierarchy common in type systems and instead unifies the
syntactic categories of terms, types, and kinds. This unifica-
tion is inspired by prior work on pure type systems (Cardelli
1986; Barendregt 1991; Roorda 2000).

As an example, the term 3 has type the type Int. Since
types are integrated into the term language, Int is also a
term, and hence has a type, namely the type “*”, which is
the “type of types”. Thus, in Sage, types are simply terms
of type *. The type * is also a term, and itself has type *.1

1 Although * : * makes for inconsistent logics (Girard 1972), it
does not detract from the soundness or usefulness of a type system
for a programming language (Cardelli 1986).

In addition to providing a syntactically elegant language,
this unification elevates types to be first-class values, which
adds substantial expressive power. That is, since types are
simply terms of type *, they can be passed to and returned
from functions, just like terms of other types. 2 Thus, Sage’s
single construct for lambda-abstraction can express all of the
following:

• normal functions, which map values to values, such as
factorial : Int → Int.

• type operators, which map types to types, such as
ListOf : * → * (given a type such as Int, this func-
tion returns the type of lists of Ints);

• polymorphic functions, such as the polymorphic identity
function that maps a type X to a value of type (X → X);

• dependent type constructors, which are functions from
values to types, such as Range : Int → Int → * (given
two integers, this function returns the type of integers
within that range).

Sage also supports arbitrary computations over terms,
and hence over types. For example, the type of printf is
naturally expressed as a computation that parses the first
argument (the format string) to compute the expected num-
ber and type of the remaining arguments. Where possible,
this computation is performed at compile time.

General Refinement Types. To express precise func-
tion pre- and post-conditions and other correctness asser-
tions, Sage also provides refinement types. For example, the
refinement type {x :Int |x > 0} describes positive integers.
Sage extends prior work on decidable refinement types (Xi
and Pfenning 1999; Xi 2000; Freeman and Pfenning 1991;
Mandelbaum et al. 2003; Ou et al. 2004) to support gen-
eral refinement predicates — any boolean expression can be
used as a refinement predicate. Thus, Sage re-uses the term
language to express both types and refinement predicates.

The Type Dynamic. In addition to allowing program-
mers to document precise program invariants as types,
Sage also supports dynamically-typed programming, where
these invariants are omitted. Values of the special type
Dynamic (Siek and Taha 2006; Henglein 1994; Abadi et al.
1989; Thatte 1990) are implicitly converted to and from
other types as necessary.

Thus, Sage programs can use a broad range of specifi-
cation paradigms, ranging from dynamically-typed Scheme-
like programming, to decidable ML-like types, to precise re-
finement specifications. In addition, types can be incremen-
tally added to a dynamically-typed prototype; each inter-
mediate partially-typed program will still type-check.

2 Sage therefore inhabits the far corner of the lambda
cube (Barendregt 1991).
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1.1 Hybrid Type Checking

The flexibility of dynamic typing and the generality of both
first-class types and general refinement types comes at a
cost: none are statically decidable.

To circumvent this limitation, Sage replaces traditional
static type checking with hybrid type checking, which en-
forces correctness properties and detects defects statically,
whenever possible. However, hybrid type checking is willing
to resort to dynamic type casts for particularly complicated
situations. The overall result is that most or all types are
enforced at compile time, but some complicated types may
be enforced instead at run time.

We briefly illustrate the key idea of hybrid type checking
by considering the function application

(factorial t)

where the function factorial has type Pos → Pos and
Pos = {x : Int | x > 0} is the type of positive integers. The
behavior of the Sage type checker depends on the type T
of the argument t:

• If T can be proven to be a subtype of Pos, then this
application is accepted as well-typed.

• Conversely, if T is a different type such as String that is
clearly not a subtype of Pos, then a type error is reported.

In a conventional, decidable type system, one of these two
cases always holds. Due to the expressiveness of the Sage
type system, however, we may encounter the following situ-
ations where this subtype judgment can neither be verified
nor refuted:

• With first-class types, T may be a type expression
that requires substantial compile-time evaluation (which
Sage supports), but this evaluation may not terminate.

• If T is a refinement type {x : Int | p}, then subtyping re-
duces to proving that (p ⇒ x > 0). Sage uses an under-
lying theorem prover to decide such implications where
possible, but the problem is undecidable in general.

• Finally, if T is the type Dynamic, then Sage cannot
statically verify that the argument t is compatible with
the function’s domain type Pos.

Sage’s hybrid type checking algorithm circumvents all of
these difficulties in a uniform manner. If Sage cannot stat-
ically verify (or refute) that the argument t produces only
values of the domain type Pos, then it inserts the type cast
〈Pos〉 on t, yielding the (well-typed) term:

(factorial (〈Pos〉 t))

At run time, this term evaluates t, checks that the resulting
value x satisfies the predicate x > 0, and only then passes
that value to factorial. Thus, Sage guarantees that the
precise Pos precondition on factorial is always enforced,
either statically or dynamically.

Note that this technique works regardless of whether the
argument type T (or the domain type Pos) is a complex
type computation, a complex refinement type, or the type
Dynamic. Thus, hybrid type checking uniformly circumvents
all of the decidability difficulties in Sage’s expressive type
system.

Of course, in a traditional type system a function
factorial of type Int → Int could internally check that its
argument is positive, but this approach has several limita-
tions: it does not document the true factorial interface as
a type; it does not statically detect errors like (factorial
-1); and it may perform redundant checking in many cases.

Figure 1: Sage Architecture
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Flanagan (2006) previously studied hybrid type checking
in the idealized setting of the simply-typed lambda-calculus
with refinements only on the base types Int and Bool. We
extend hybrid type checking to the more technically chal-
lenging domain of a rich language that includes all of the
features described above, and we also provide an implemen-
tation and experimental validation of this approach.

1.2 Architecture

This overall architecture of our Sage compiler and run-time
system is shown in Figure 1. It includes a subtype algorithm
that integrates a compile-time evaluator (for type computa-
tions), a theorem prover (for refinement types), and also a
counter-example database. If a compiler-inserted cast from
type S to type T fails at run time, then S is not a sub-
type of T , and Sage stores the fact that in this database.
The type checker uses this database to subsequently re-
ject any program that relies on S being a subtype of T .
Thus, dynamic type errors can actually improve the ability
of the Sage compiler to detect type errors statically. More-
over, when a compiler-inserted cast fails, Sage will report a
list of previously-compiled programs that contain the same
cast. Thus, the counter-example database functions some-
what like a regression test suite, in that it can detect errors in
previously-compiled programs. Over time, the database may
become a valuable repository of common but invalid sub-
type relationships. For performance, we also cache proven
subtype relationships in the database.

1.3 Contributions

The primary contributions of this paper are as follows:

• We present Sage, a lightweight language with a rich type
system that integrates three powerful concepts: first-class
types, general refinement types, and the type Dynamic.

• We prove the soundness of this type system.
• We present a hybrid type checking algorithm that:

- generates only well-typed programs;

- enforces all types, either statically or dynamically; and
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- integrates compile-time evaluation, theorem proving,
and a counter-example database.

• We describe a prototype implementation of the language.
• We show that on a number of example programs and

data structures, Sage can verify the vast majority of
types statically — the number of compiler-inserted casts
is very small or zero in all cases.

Although our initial feasibility study with Sage is promis-
ing, many issues remain for future work. Our implementa-
tion performs bidirectional type checking (Pierce and Turner
1998), allowing many types to be inferred locally, but does
not yet perform full type inference (a much more techni-
cally challenging problem). We also plan to evaluate Sage
on larger benchmarks, to measure Sage’s ability to reject
erroneous programs at compile time, and to evaluate the
benefits of the counterexample database in this regard.

The presentation of our results proceeds as follows. The
following section illustrates the Sage language through a
series of examples. Sections 3 and 4 define the syntax,
semantics, and type system of Sage. Section 5 presents a
hybrid type checking algorithm for the language. Sections 6
and 7 describe our implementation and experimental results.
Sections 8 and 9 discuss related work and future plans.

2. Motivating Examples

We introduce Sage through several examples illustrating
key features of the language, including refinement types,
dependent function types, datatypes, and recursive types.

The Sage source language extends the core language pre-
sented in Section 3 with a number of additional constructs
that are desugared by the parser before type checking. In
particular, the datatype construct is desugared into a col-
lection of function definitions, via Church-style encodings.

2.1 Binary Search Trees

We begin with the commonly-studied example of binary
search trees: see Figure 2. The variable Range has type
Int → Int → *. Given two integers lo and hi, the appli-
cation (Range lo hi) returns a refinement type describing
integers in the range [lo, hi).

A binary search tree (BST lo hi) is an ordered tree
containing integers in the range [lo, hi). A tree may either
be Empty, or a Node containing an integer v ∈ [lo, hi) and
two subtrees containing integers in the ranges [lo, v) and
[v, hi), respectively. Thus, the type of binary search trees
explicates the requirement that these trees must be ordered.

The function search takes as arguments two integers lo
and hi, a binary search tree of type (BST lo hi), and an
integer x in the range [lo, hi). Note that Sage supports
dependent function types, and so the type of the third
argument to search can depend on the values of the first
and second arguments. The function search then checks if
x is in the tree. The function insert takes similar arguments
and extends the given tree with the integer x.

The Sage compiler uses an automatic theorem prover
to statically verify that the specified ordering invariants on
binary search trees are satisfied by these two functions —
no run-time checking is required.

Precise types enable Sage to detect various common
programming errors. For example, suppose we inadvertently
used the wrong conditional test:

24: if x <= v

Figure 2: Binary Search Trees

1: let Range (lo:Int) (hi:Int) : * =
2: {x:Int | lo <= x && x < hi };
3:
4: datatype BST (lo:Int) (hi:Int) =
5: Empty
6: | Node of (v:Range lo hi)*(BST lo v)*(BST v hi);
7:
8: let rec search (lo:Int) (hi:Int) (t:BST lo hi)
9: (x:Range lo hi) : Bool =
10: case t of
11: Empty -> false
12: | Node v l r ->
13: if x = v then true
14: else if x < v
15: then search lo v l x
16: else search v hi r x;
17:
18: let rec insert (lo:Int) (hi:Int) (t:BST lo hi)
19: (x:Range lo hi) : (BST lo hi) =
20: case t of
21: Empty ->
22: Node lo hi x (Empty lo x) (Empty x hi)
23: | Node v l r ->
24: if x < v
25: then Node lo hi v (insert lo v l x) r
26: else Node lo hi v l (insert v hi r x);

For this incorrect program, the Sage compiler will report
that the first recursive call to insert is ill-typed:

line 25: x does not have type (Range lo v)

Similarly, if an argument to Node is incorrect, e.g.:

26: else Node lo hi v r (insert v hi r x);

the Sage compiler will report the type error:

line 26: r does not have type (BST lo v)

A traditional type system that does not support precise
specifications would not detect these errors.

Using this BST implementation, constructing trees with
specific constraints is straightforward (and verifiable). For
example, the following code constructs a tree containing only
positive numbers:

let PosBST : * = BST 1 MAXINT;
let nil : PosBST = Empty 1 MAXINT;
let add (t:PosBST) (x:Range 1 MAXINT) : PosBST =

insert 1 MAXINT t x;
let t : PosBST = add (add (add nil 1) 3) 5;

This precisely-typed BST implementation can inter-
operate cleanly with dynamically-typed client code, while
still preserving the ordering invariant on BSTs:

let t1 : Dynamic = add nil 1;
let t2 : Dynamic = add t1 3;

2.2 Regular Expressions

We now consider more complicated types. Figure 3 declares
the Regexp datatype and the function match, which deter-
mines if a string matches a regular expression. The Regexp
datatype includes constructors to match any single letter
(Alpha) or any single letter or digit (AlphaNum), as well as
usual the Kleene closure, concatenation, and choice opera-
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Figure 3: Regular Expressions and Names

datatype Regexp =
Alpha

| AlphaNum
| Kleene of Regexp
| Concat of Regexp * Regexp
| Or of Regexp * Regexp
| Empty;

let match (r:Regexp) (s:String) : Bool = ...

let Name = {s:String | match (Kleene AlphaNum) s};

tors. As an example, the regular expression “[a-zA-Z0-9]*”
is represented as (Kleene AlphaNum).

The code then uses match to define the type Name, which
refines the type String to allow only alphanumeric strings.
We use the type Name to enforce an important, security-
related interface specification for the following function
authenticate. This function performs authentication by
querying a SQL database (where ‘^’ denotes string concate-
nation):

let authenticate (user:Name) (pass:Name) : Bool =
let query : String =
("SELECT count(*) FROM client

WHERE name=" ^ user ^ " and pwd=" ^ pass)
in executeSQLquery(query) > 0;

This code is prone to security attacks if given specially-
crafted non-alphanumeric strings. For example, calling

authenticate "admin --" ""

breaks the authentication mechanism because “--” starts
a comment in SQL and consequently “comments out” the
password part of the query. To prohibit this vulnerability,
the type:

authenticate : Name → Name → Bool

specifies that authenticate should be applied only to al-
phanumeric strings.

Next, consider the following user-interface code:

let username : String = readString() in
let password : String = readString() in
authenticate username password;

This code is ill-typed, since it passes arbitrary user input
of type String to authenticate. Proving that this code
is ill-typed, however, is quite difficult, since it depends on
complex reasoning showing that the user-defined function
match is not a tautology, and hence that not all Strings are
Names.

Unsurprisingly, Sage cannot statically verify or refute
this code. Instead, it inserts the following casts at the call
site to enforce authenticate’s specification dynamically:

authenticate (〈Name〉 username) (〈Name〉 password);

At run time, these casts check that username and password
satisfy the predicate match (Kleene AlphaNum). If the user-
name “admin --” is ever entered, the cast (〈Name〉 username)
will fail and halt program execution.

2.3 Counter-Example Database

Somewhat surprisingly, a dynamic cast failure actually
strengthens Sage’s ability to detect type errors statically. In
particular, the string “admin --” is a witness proving that
not all Strings are Names, i.e., E 6⊢ String <: Name (where

E is the typing environment for the call to authenticate
and includes the definitions of Regexp, match, and Name).
Rather than discarding this information, and potentially
observing the same error on later runs or in different pro-
grams, such refuted subtype relationships are stored in a
database. If the above code is later re-compiled, the Sage
compiler will discover upon consulting this database that
String is not a subtype of Name, and it will statically reject
the call to authenticate as ill-typed.

Additionally, the database stores a list of other programs
previously compiled under the assumption that String may
be a subtype of Name, and Sage will also report that these
programs are ill-typed. It remains to be seen how to best
incorporate this unusual functionality into the software en-
gineering process – as one example, these error reports could
be inserted into a bug database for inspection at a later date.

2.4 Printf

As a final example, we examine the printf function. The
number and type of the expected arguments to printf de-
pends in subtle ways on the format string (the first argu-
ment). We can define a function

Args : String -> *

that computes the printf argument types for a given for-
mat string. For example, (Args "%d%d") evaluates to the
type Int → Int → Unit. Using this function, we can assign
to printf the precise type:

printf : (format:String -> (Args format))

The term (printf "%d%d") then has type (Args "%d%d"),
which is evaluated at compile time to Int → Int → Unit.
Thus, Sage is sufficiently expressive to need no special sup-
port for accommodating printf and catching errors in many
printf clients statically.

Other languages, such as OCaml (Leroy et al. 2004),
provide this functionality, but only for constant format
strings. Some applications, however, need non-constant for-
mat strings, particularly for internationalization. Consider
the following example:

let repeat (s:String) (n:Int) : String =
if (n = 0) then "" else (s ^ (repeat s (n-1)));

// checked statically:
printf (repeat "%d" 2) 1 2;

The Sage compiler infers that (printf (repeat "%d" 2))
has type (Args (repeat "%d" 2)), which evaluates (at
compile time) to Int → Int → Unit, and hence this call is
well-typed. Conversely, the compiler would statically reject
the following ill-typed call:

// compile-time error:
printf (repeat "%d" 2) 1 false;

For efficiency, and to avoid non-termination, the compiler
performs only a user-configurable bounded number of eval-
uation steps before resorting to dynamic checking. Given a
small bound, the following call requires a run-time check:

// run-time error:
printf (repeat "%d" 20) 1 2 ... 19 false;

As expected, the inserted dynamic cast catches the error.
Interestingly, the type of printf defines an interface

between two parties: the printf implementation and the
printf clients. As we have seen, the client side of this inter-
face is enforced (primarily) statically, whereas the current
Sage prototype needs to enforce the implementation side
of this interface dynamically, via the following implicitly-
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inserted type cast:

let printf (format:String) : (Args format) =
〈(Args format)〉 (...printf implementation...)

These static checks (on the client side) and dynamic checks
(on the implementation side) co-operate to enforce both
sides of the printf interface and to ensure type soundness.
We revisit this example in more detail in Section 5 to illus-
trate Sage’s hybrid type checking algorithm.

3. The Core Language

3.1 Syntax

In Sage, source programs are desugared into the small core
language described in Figure 4. Although Sage merges the
syntactic categories of terms and types, we use the following
naming convention to distinguish the intended use of meta-
variables: s, t range over terms; x, y, z range over variables;
and u, v range over values, and the corresponding capitalized
variables (S, T , etc) range over types, type variables, and
type values, respectively.

The core language includes variables, constants, func-
tions, function applications, and let expressions. It also in-
cludes dependent function types, for which we use the syn-
tax x : S → T (in preference over the equivalent notation
Πx : S. T ). Here, S specifies the function’s domain, and the
formal parameter x can occur free in the range type T . We
use the shorthand S → T when x does not occur free in T .

Sage includes the type constants Unit, Bool, Int,
Dynamic, and *, which all have type *. More precise types
can be introduced via the polymorphic function Refine.
This function takes a type X and a predicate over X, and
returns the refinement type containing all values of type X
that satisfy that predicate. We use the shorthand {x :T | t}
to abbreviate Refine T (λx :T. t). Thus, {x :Int |x > 0} de-
notes the type of positive numbers.

Sage uses refinements to assign precise types to con-
stants. For example, an integer n has the singleton type
{m : Int |m = n} denoting the set {n}. Similarly, the type
of the operation + specifies that its result is the sum of its
arguments:3

n :Int → m :Int → {z :Int | z = n + m}

The behavior of the primitive function if is also pre-
cisely described via polymorphic and refinement types. In
particular, the “then” parameter to if is a thunk of type
({d :Unit | p} → X). That thunk can be invoked only if the
domain {d : Unit | p} is inhabited, i.e., only if the test ex-
pression p evaluates to true. Thus the type of if precisely
specifies its behavior.

The function fix supports recursive definitions of both
functions and types; it takes a type X and a function over
X, and conceptually returns a fixed point of that function.
For example, the type of integer lists is defined as:

fix * (λL :*. Sum Unit (Pair Int L))

which (roughly) returns a type L satisfying the equation:

L = Sum Unit (Pair Int L)

3 The apparent circularity where the type of + is defined in
terms of + itself does not cause any difficulties in our technical
development, since the meaning of refinement types is defined
below in terms of the operational semantics.

Figure 4: Syntax, Constants, and Shorthands

Term Syntax:

s, t, S, T ::= x variable
c constant
let x = t : S in t binding
λx :S. t abstraction
t t application
x :S → T function type

Constants:

* : *
Unit : *
Bool : *
Int : *

Dynamic : *
Refine : X :* → (X → Bool) → *

unit : Unit
true : {b :Bool | b}
false : {b :Bool | not b}
not : b :Bool → {b′ :Bool | b′ = not b}

n : {m :Int |m = n}
+ : n :Int → m :Int → {z :Int | z = n + m}
= : x :Dynamic → y :Dynamic

→ {b :Bool | b = (x = y)}

if : X :* → p :Bool
→ ({d :Unit | p} → X)
→ ({d :Unit | not p} → X)
→ X

fix : X :* → (X → X) → X
cast : X :* → Dynamic → X

Shorthands:

S → T = x :S → T x 6∈ FV (T )
〈T 〉 = cast T

{x :T | t} = Refine T (λx :T. t)
ifT t1 then t2 else t3 =

if T t1 (λx :{d :Unit | t}. t2) (λx :{d :Unit | not t}. t3)

Here, Sum and Pair are the type constructors for Church-
encoded sums and pairs, respectively:

Pair = λX :*. λY :*. (Z :* → (X → Y → Z) → Z)
Sum = λX :*. λY :*. (Z :* → (X → Z) → (Y → Z) → Z)

The function cast performs run-time type casts. It takes
a type X and a value of type Dynamic (the supertype of all
types) and attempts to cast that value to type X. We use the
shorthand 〈T 〉 t to abbreviate cast T t. Thus, for example,
the following expression casts the integer y to the refinement
type of positive numbers, and fails if y is not positive.

〈{x :Int |x > 0}〉 y

3.2 Operational Semantics

We formalize the execution behavior of Sage programs with
the small-step operational semantics shown in Figure 5.
Evaluation is performed inside evaluation contexts E . Appli-
cations, let expressions, and the basic integer and boolean
operations behave as expected. Rule [E-Eq] uses syntactic
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Figure 5: Evaluation Rules

Evaluation s −→ t

E [s] −→ E [t] if s −→ t [E-Compat]

(λx :S. t) v −→ t[x := v] [E-App]
let x = v : S in t −→ t[x := v] [E-Let]

not true −→ false [E-Not1]
not false −→ true [E-Not2]

ifT true v1 v2 −→ v1 unit [E-If1]
ifT false v1 v2 −→ v2 unit [E-If2]

+ n1 n2 −→ n n = (n1 + n2) [E-Add]
= v1 v2 −→ c c = (v1 ≡ v2) [E-Eq]

〈Bool〉 true −→ true [E-Cast-Bool1]
〈Bool〉 false −→ false [E-Cast-Bool2]
〈Unit〉 unit −→ unit [E-Cast-Unit]

〈Int〉 n −→ n [E-Cast-Int]
〈Dynamic〉 v −→ v [E-Cast-Dyn]

〈*〉 v −→ v [E-Cast-Type]
if v ∈ { Int, Bool, Unit, Dynamic, *,

x :S → T, fix * f, Refine T f }

〈x :S → T 〉 v −→ [E-Cast-Fn]
λx :S. 〈T 〉 (v (〈D〉 x))

where D = domain(v)

〈Refine T f〉 v −→ 〈T 〉 v [E-Cast-Refine]
if f (〈T 〉 v) −→∗ true

S [fix U v] −→ S [v (fix U v)] [E-Fix]

E ::= • | E t | v E Evaluation Contexts
S ::= • v | 〈•〉 v Strict Contexts

u, v, U, V ::= Values
x variable
λx :S. t abstraction
x :S → T function type
c constant
c v1 . . . vn constant, 0 < n < arity(c)
Refine U v refinement
fix U v recursive type

equality (≡) to test equivalence of all values, including func-
tion values.4

The most interesting reduction rules are those for casts
〈T 〉 v, which define a dynamic meaning for each type T .
Casts to one of the base types Bool, Unit, or Int succeed
if the value v is of the appropriate type. Casts to type *
succeed only for values of type *. Casts to type Dynamic
always succeed.

For casts to function types, we first introduce the function
domain, which extracts the domain of a function value and
is undefined on non-function values. Function values include
λ-abstractions, partially-applied constants, and fixed point

4 A semantic notion of equality could provide additional flexibility,
but would be undecidable. In practice, syntactic equality has been
sufficient.

Figure 6: Type Rules

Environments E

E ::= ∅ empty environment
E, x : T environment extension
E, x = v : T environment term extension

Type rules E ⊢ t : T

E ⊢ c : ty(c)
[T-Const]

(x : T ) ∈ E or (x = v : T ) ∈ E

E ⊢ x : {y :T | y = x} [T-Var]

E ⊢ S : * E, x : S ⊢ t : T

E ⊢ (λx :S. t) : (x :S → T )
[T-Fun]

E ⊢ S : * E, x : S ⊢ T : *

E ⊢ (x :S → T ) : *
[T-Arrow]

E ⊢ t1 : (x :S → T ) E ⊢ t2 : S

E ⊢ t1 t2 : T [x := t2]
[T-App]

E ⊢ v : S E, (x = v : S) ⊢ t : T

E ⊢ let x = v : S in t : T [x := v]
[T-Let]

E ⊢ t : S E ⊢ S <: T

E ⊢ t : T
[T-Sub]

operations of function type.

domain : Value → Term
domain(λx :T. t) = T

domain(c v1 . . . vi−1) = type of ith argument to c
domain(fix (x :T → T ′) v) = T

domain(fix (Refine U f) v) = domain(fix U v)

The rule [E-Cast-Fn] casts a function v with domain type
D = domain(v) to type x : S → T by creating a new
function:

λx :S. 〈T 〉 (v (〈D〉 x))

This new function has the desired type x :S → T ; it takes a
value x of type S, casts it to the domain type D of v, applies
the given function v, and casts the result to the desired result
type T . Thus, domain and range types on function casts
are enforced lazily, in a manner reminiscent of higher-order
contracts (Findler and Felleisen 2002) and related techniques
from denotational semantics (Scott 1976).

To cast a value v to a refinement type Refine T f , the
rule [E-Cast-Refine] first casts v to type T and then checks
if the predicate f holds on this value. If it does, the cast
succeeds and returns 〈T 〉 v.

The operation fix defines recursive functions and types,
which are considered values, and hence fix U v is also a
value. This construct is unrolled one step to (v (fix U v))
by the rule [E-fix] whenever it appears in a strict context S ,
i.e., in a function position or in a cast.

4. The Sage Type System

Although type checking for Sage is undecidable, we can
nonetheless formalize the notion of well-formed programs
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Figure 7: Subtype Rules

Subtype rules E ⊢ S <: T

E ⊢ T <: T
[S-Refl]

E ⊢ T <: Dynamic
[S-Dyn]

E ⊢ T1 <: S1 E, x : T1 ⊢ S2 <: T2

E ⊢ (x :S1 → S2) <: (x :T1 → T2)
[S-Fun]

E, F [x := v] ⊢ S[x := v] <: T [x := v]

E, x = v : U, F ⊢ S <: T
[S-Var]

s −→ s′ E ⊢ C[s′] <: T

E ⊢ C[s] <: T
[S-Eval-L]

t −→ t′ E ⊢ S <: C[t′]

E ⊢ S <: C[t]
[S-Eval-R]

E ⊢ S <: T

E ⊢ (Refine S f) <: T
[S-Ref-L]

E ⊢ S <: T E, x : S |= f x

E ⊢ S <: (Refine T f)
[S-Ref-R]

via a type system. An environment binds variables to types
and, in some cases, to values: see Figure 6. We apply im-
plicit α-renaming to ensure that substitutions are capture-
avoiding and that each variable is bound at most once in an
environment.

Typing. As usual, the judgment E ⊢ t : T assigns type T
to term t in environment E. The rules defining this judgment
are mostly straightforward.

The rule [T-Const] (in Figure 6) uses the function ty to
retrieve the type of each constant c, as defined in Figure 4.
The rule [T-Var] for a variable x extracts the type T of
x from the environment, and assigns to x the singleton
refinement type {y :T | y = x}. For a function λx :S. t, the
rule [T-Fun] infers the type T of t and returns the dependent
function type x : S → T , where x may occur free in T .
The term x :S → T is assigned type * by rule [T-Arrow],
provided that both S and T have type *. The rule [T-App]
for an application (t1 t2) first checks that t1 has a function
type (x : S → T ) and that t2 has type S; the application
then has type T with x replaced by t2.

The type rule [T-Let] for let x = v : S in t first checks
that v has type S, and then type checks t in the environment
E, (x = v : S), which contains both the type and the value
of x. These value bindings are used in the subtype judgment,
as described below. Subtyping is allowed at any point in a
typing derivation via the rule [T-Sub].

Subtyping. The complexities and decidability issues in
Sage mostly involve the subtyping judgment E ⊢ S <: T
defined in Figure 7. The rules [S-Refl] and [S-Dyn] allow
every type to be a subtype both of itself and of the type
Dynamic. The rule [S-Fun] performs the usual contravari-
ant/covariant checks for function subtyping.

The rules [S-Eval-L] and [S-Eval-R] support computa-
tions over types, and close the subtype relation under eval-

uation in arbitrary contexts C:

C ::= • | C t | t C | λx :C. t | λx :T. C
| x :C → T | x :T → C
| let x = C : S in t | let x = t : C in t
| let x = t : S in C

The rule [S-Var] facilitates this evaluation by replacing a
variable with the value to which it was bound via [T-Let].
Variables with only type bindings (x : T ) are not substi-
tuted, so evaluation may get stuck on these variables.5

The final two subtype rules [S-Ref-L] and [S-Ref-R] han-
dle refinement types on the left and right sides of the subtype
relation, respectively. The rule [S-Ref-L] states that any re-
finement of S is a subtype of T provided that S itself is a
subtype of T . The rule [S-Ref-R] states that S is a subtype
of (Refine T f) provided that S is a subtype of T and that
the predicate f holds or is valid on all values of type S – the
notion of validity is defined below.

In Sage, recursive types are introduced by the fix op-
erator, whose semantics is defined via unrolling: see [E-Fix].
Hence, Sage supports a form of equi-recursive types (Crary
et al. 1999). However, because it dramatically simplifies the
metatheory, we limit our subtyping relation to the least fixed
point of the subtype rules (all finite derivations).

Theorem Proving. The theorem proving judgment E |= t
states that a a boolean term t is valid in an environment E.
We specify the interface between the type system and the
theorem prover via the following axioms (akin to those used
by (Ou et al. 2004)), which are sufficient to prove soundness
of the type system.6

1. Faithfulness: If t −→∗ true then E |= t. If t −→∗ false
then E 6|= t.

2. Hypothesis: If (x : {y :S | t}) ∈ E then E |= t[y := x].

3. Weakening: If E, G |= t then E, F, G |= t.

4. Substitution: If E, (x : S), F |= t and E ⊢ s : S then
E, F [x := s] |= t[x := s].

5. Exact Substitution: E, (x = v : S), F |= t if and only if
E, F [x := v] |= t[x := v].

6. Preservation: If s −→∗ t, then E |= C[s] if and only if
E |= C[t].

7. Narrowing: If E, (x : T ), F |= t and E ⊢ S <: T then
E, (x : S), F |= t.

A consequence of the Faithfulness axiom is that the
validity judgment is undecidable. In addition, the subtype
judgment may require an unbounded amount of compile-
time evaluation. These decidability limitations motivate the
development of the hybrid type checking techniques of the
following section.

Soundness. The Sage type system guarantees progress
(i.e., that well-typed programs can only get stuck due to

5 More general techniques to permit continued evaluation in such
cases might yield a larger subtype relation, but are not necessary
for soundness.
6 An alternative to these axioms is to define the validity judgment
E |= t directly: i.e., it holds if, for all closing substitutions σ (from
variables in E to terms consistent with their types), the term
σ(t) evaluates to true. This approach creates a non-monotonic
cycle between validity and typing judgments, however, and so the
consistency of the resulting system is non-obvious and remains an
open question. For these reasons, we chose to axiomatize theorem
proving instead.
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Figure 8: Compilation Rules

Compilation rules E ⊢ s →֒ t : T

(x : T ) ∈ E or (x = t : T ) ∈ E

E ⊢ x →֒ x : {y :T | y = x} [C-Var]

E ⊢ c →֒ c : ty(c)
[C-Const]

E ⊢ S →֒ S′ ↓ * E, x : S′ ⊢ t →֒ t′ : T

E ⊢ (λx :S. t) →֒ (λx :S′. t′) : (x :S′ → T )
[C-Fun]

E ⊢ S →֒ S′ ↓ * E, x : S′ ⊢ T →֒ T ′ ↓ *

E ⊢ (x :S → T ) →֒ (x :S′ → T ′) : *
[C-Arrow]

E ⊢ t1 →֒ t′1 : T unrefine(T ) = x :S1 → S2

E ⊢ t2 →֒ t′2 ↓ S1

E ⊢ t1 t2 →֒ t′1 t′2 : S2[x := t′2]
[C-App1]

E ⊢ t1 →֒ t′1 ↓ (Dynamic → Dynamic)
E ⊢ t2 →֒ t′2 ↓ Dynamic

E ⊢ t1 t2 →֒ t′1 t′2 : Dynamic
[C-App2]

E ⊢ S →֒ S′ ↓ * E ⊢ v →֒ v′ ↓ S′

E, (x = v′ : S′) ⊢ t →֒ t′ : T T ′ = T [x := v′]
E ⊢ let x = v : S in t

→֒ let x = v′ : S′ in t′ : T ′

[C-Let]

Compilation and checking rules E ⊢ s →֒ t ↓ T

E ⊢ t →֒ t′ : S E ⊢
√

alg S <: T

E ⊢ t →֒ t′ ↓ T
[CC-Ok]

E ⊢ t →֒ t′ : S E ⊢?
alg S <: T

E ⊢ t →֒ (〈T 〉 t′) ↓ T
[CC-Chk]

Subtyping algorithm (see Fig. 9) E ⊢a
alg S <: T

failed casts) and preservation (i.e., that evaluation of a term
preserves its type). The proofs appear in the appendix.

5. Hybrid Type Checking

In Sage, subtyping, and hence type checking, is undecidable.
Sage circumvents this limitation using hybrid type check-
ing, which is based on a subtype algorithm that conserva-
tively approximates the undecidable subtyping relation. For
a given subtype query E ⊢ S <: T , this subtype algorithm
E ⊢a

alg S <: T returns a result a ∈ {√,×, ?} indicating
whether:

(
√

) the algorithm succeeds in proving the query;

(×) the algorithm refutes the query; or

(?) the algorithm cannot decide this particular query.

Compilation. Using this conservative subtype algorithm,
we define a hybrid type checking or compilation algorithm

E ⊢ s →֒ t : T

that type checks the source program s in environment E and
inserts dynamic casts to compensate for limitations in the

subtype algorithm, yielding the well-typed term t of type T .
The compilation and checking judgment

E ⊢ s →֒ t ↓ T

is similar, except that it takes as an input the desired type
T and ensures that t has that type.

The rules defining these judgments are shown in Figure 8.
Many of these rules are similar to the corresponding type
rules, e.g., [C-Var] and [C-Const]. The rule [C-Fun] for
λx :S. t compiles S to some type S′ of type * and compiles t
to a term t′ of type T , and returns the compiled function λx :
S′. t′ of type x :S′ → T . The rule [C-Arrow] for a function
type compiles the two component types, which must have
type *. The rule [C-Let] compiles the term let x = v :
S in t by recursively compiling v, S and t in appropriate
environments.

The rules for a function application t1 t2 are more in-
teresting. The rule [C-App1] starts by compiling the func-
tion t1 to some term t′1 of some type T . This type T may
not be a syntactic function type; instead it may be a re-
finement of a function type, or it may require evaluation
to yield a function type. The following partial function
unrefine : Term → Term extracts the underlying syntac-
tic function type in these cases:

unrefine(x :S → T ) = x :S → T
unrefine(Refine T f) = unrefine(T )

unrefine(T ) = unrefine(T ′) if T −→ T ′

Since the evaluation performed by unrefine may not ter-
minate, the rule [C-App2] provides a backup strategy for
applications that performs fewer static checks and more dy-
namic checks. This rule checks that the function t1 has only
the most general function type Dynamic → Dynamic, and
correspondingly coerces the argument t2 to type Dynamic,
resulting in an application with type Dynamic.

Compilation and Checking. The rules defining the
compilation and checking judgment E ⊢ s →֒ t ↓ T il-
lustrate the key ideas of hybrid type checking. These rules
compile the given term and check that the compiled term
has the expected type T via the subtyping query

E ⊢a
alg S <: T

If this query succeeds (a =
√

), then [CC-OK] returns the
compiled term. If the query is undecided (a = ?), then
[CC-Chk] encloses the compiled term in the cast 〈T 〉 to
preserve dynamic type safety. If the query fails (a = ×),
then no rule applies and the program is rejected as ill-typed.

Compilation of Dynamic. The type system (via [S-Dyn])
and the operational semantics (via [E-Cast-Dyn]) both treat
Dynamic as a maximal or top type. As a consequence, the
program

P
def
= λadd1:(Int → Int). λx :Dynamic. (add1 x)

is technically ill-typed, as Dynamic is not a subtype of Int.
To permit convenient interoperation between statically

and dynamically typed code, however, we would like Sage
to accept this program and to implicitly downcast Dynamic
to the domain type Int. To achieve this desired behavior,
we simply have the subtype algorithm return the unknown
result E ⊢?

alg Dynamic <: Int, which causes the compilation
rules [C-App1] and [CC-Chk] to accept this program and in-
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sert the desired downcast, yielding the well-typed program:7

λ add1:(Int → Int). λx :Dynamic. (add1 (〈Int〉 x))

We generalize this requirement for the subtype algorithm
as the following lemma.

Lemma 1 (Subtype Algorithm).

1. If E ⊢
√

alg S <: T then E ⊢ S <: T .

2. If E ⊢×
alg S <: T then ∀E′, S′, T ′ that are obtained from

E, S, T by replacing the type Dynamic by any type, we
have that E′ 6⊢ S′ <: T ′.

Clearly, a näıve subtype algorithm could always return the
result “?” and thus trivially satisfy these requirements. The
following section describes a more precise subtype algorithm
that enables Sage to verify more properties and to detect
more errors at compile time.

We note that the type Dynamic → Dynamic mentioned
earlier is the most general function type with respect to
this subtype algorithm (although not the subtype relation).
In particular, for any function type U (which may require
unbounded evaluation to yield a syntactic function type
x :S → T ), we have that E ⊢a

alg U <: (Dynamic → Dynamic)
for some a ∈ {√, ?}.
Example. To illustrate how Sage verifies specifications
statically when possible, but dynamically when necessary,
consider the printf client:

t
def
= printf "%d" 4

For this term, the rule [C-App1] will first compile the subex-
pression (printf "%d") via the following compilation judg-
ment (based on the type of printf from Section 2.4):

. . . ⊢ (printf "%d") →֒ (printf "%d") : (Args "%d")

The rule [C-App1] then calls the function unrefine to eval-
uate (Args "%d") to the normal form Int → Unit. Since 4
has type Int, the term t is therefore accepted as is; no casts
are needed.

Alternatively, if the computation for (Args "%d") does
not terminate within a preset time limit, the compiler uses
the rule [C-App2] to compile t into the code:

(〈Dynamic → Dynamic〉 (printf "%d")) 4

At run time, (printf "%d") evaluates to some function
(λx :Int. · · ·) that expects an Int, yielding the application:

(〈Dynamic → Dynamic〉 (λx :Int. · · ·)) 4

The rule [E-Cast-Fn] then reduces this term to:

(λx :Dynamic. 〈Dynamic〉 ((λx :Int. · · ·) (〈Int〉 x))) 4

where the nested cast 〈Int〉 x dynamically ensures that the
next argument to printf must be an integer.

Correctness. Even though the Sage type system is un-
decidable, the compilation algorithm is guaranteed to gen-
erate only well-typed programs. The proof appears in the
appendix. The compilation algorithm may accept some com-
plex but ill-typed programs, but it will insert sufficient type
casts to enforce all types and to ensure that the compiled
program is well-typed. Hence, compiled programs only go
wrong on type casts that were either inserted by the pro-
grammer or by the compiler for ill-typed source programs.

7 Interestingly, the compilation algorithm makes explicit this
check that a Scheme implementation would perform implicitly
inside the primitive add1 : Dynamic → Dynamic.

Typing Source Programs. The Sage type system is ap-
plicable to both the source and target programs of a com-
pilation judgment E ⊢ s →֒ t : T . For the target program,
the type system guarantees preservation and progress. For
the source program, however, this type system is a little in-
complete in its handling of Dynamic. For example, the type
system does not accept the program P on page 8, because it
does not support implicit conversion from Dynamic to Int.

We could overcome this limitation by defining a source
program to be well-typed if it compiles using the most
precise subtype algorithm satisfying Lemma 1. From this
definition, we can derive a separate collection of typing
rules for source programs that permit implicit conversions
between Dynamic and other types, and which adapt the
ideas of Siek and Taha (2006) to our more complicated
language. Space limitations preclude the presentation of this
additional source-language type system here, and, in any
case, our existing type system functions adequately for our
purposes.

6. Implementation

Our prototype Sage implementation consists of roughly
6,000 lines of OCaml code. It extends the core language
of Section 3 with a number of additional constructs that
are desugared by the parser, before type checking. It also
performs bidirectional type checking (Pierce and Turner
1998), allowing many types to be inferred locally.

Evaluation. The Sage run time implements the seman-
tics from Section 3, plus a counter-example database of
failed casts. Specifically, suppose the compiler inserts the
cast (〈T 〉 t) because it cannot prove or refute some subtype
test E ⊢ S <: T . If that cast fails on a value v, the run time
inserts an entry into the database asserting that E 6⊢ S <: T ,
and records v as a witness of this fact.

To correctly assign blame for cast failures, every cast car-
ries a label identifying the corresponding term in the source
program, and these labels are propagated as necessary dur-
ing evaluation. In particular, the two new casts inserted
by [E-Cast-Fn] carry the same label as the original func-
tion cast. These labels are then sufficient to provide precise
blame assignment — in particular, the more complex blame
assignment techniques for higher-order contracts (Findler
and Felleisen 2002) are unnecessary for higher-order type
casts (Gronski and Flanagan 2007).

Subtype Algorithm. The key difficulty in implementing
hybrid type checking for Sage is in providing an adequately
precise subtype algorithm. The Sage subtype algorithm ap-
plies the rules of Figure 9, in the order in which they are
presented, and it supports equi-recursive types by comput-
ing the greatest fixed point of these rules. These rules rely
on the 3-valued conjunction operator ⊗:

⊗ √
? ×√ √
? ×

? ? ? ×
× × × ×

The rules [AS-Refl], [AS-Fun], [AS-Dyn-R], [AS-Ref-L],
and [AS-Var] are straightforward adaptations of correspond-
ing earlier rules. The rule [AS-Dyn-L] ensures that converting
from Dynamic to any other type requires an explicit coercion.

The rules [AS-Eval-L] and [AS-Eval-R] perform evalua-
tion of types within D-contexts. To avoid non-terminating
computations (e.g., due to the infinite unrolling of recursive
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Figure 9: Subtyping Algorithm

Algorithmic subtyping rules E ⊢a
alg S <: T

E ⊢×
db S <: T

E ⊢×
alg S <: T

[AS-Db]

E ⊢
√

alg T <: T
[AS-Refl]

E ⊢a
alg T1 <: S1

E, x : T1 ⊢b
alg S2 <: T2 c = a ⊗ b

E ⊢c
alg (x :S1 → S2) <: (x :T1 → T2)

[AS-Fun]

E ⊢?
alg Dynamic <: T

[AS-Dyn-L]

E ⊢
√

alg S <: Dynamic
[AS-Dyn-R]

E ⊢a
alg S <: T a ∈ {√, ?}

E ⊢a
alg (Refine S f) <: T

[AS-Ref-L]

E ⊢a
alg S <: T E, x : S |=b

alg f x c = a ⊗ b

E ⊢c
alg S <: (Refine T f)

[AS-Ref-R]

E, F [x := v] ⊢a
alg S[x := v] <: T [x := v]

E, x = v : U, F ⊢a
alg S <: T

[AS-Var]

s −→ s′ E ⊢a
alg D[s′] <: T

E ⊢a
alg D[s] <: T

[AS-Eval-L]

t −→ t′ E ⊢a
alg S <: D2[t

′]

E ⊢a
alg S <: D2[t]

[AS-Eval-R]

D ::= • | N D where N is a normal form

Algorithmic theorem proving E |=a
alg t

separate algorithm

Counter-example database E ⊢×
db S <: T

database of previously failed casts

types), the algorithm bounds the number of applications of
these two rules.

If no rule is applicable, then the algorithm returns “×”
provided that both types are values; if either type is not a
value, the algorithm returns the conservative result “?”.

Counter-Example Database. The subtype rule [As-Db]
attempts to refute E ⊢ S <: T by querying the counter-
example database. It uses the judgment E ⊢×

db S <: T ,
which essentially looks for an exact match for the triple
〈E, S, T 〉 in the database. To maximize the likelihood of a
database hit, the triple is first translated into an equivalent
but canonical form by (1) removing from E any bindings for
variables that are not directly or transitively referenced by
S or T , and (2) by replacing all variable names by deBruijn
indices. Database entries are also translated into canonical
form before insertion.

Theorem Proving Algorithm. The rule [AS-Ref-R] for
checking whether S is a subtype of a specific refinement type

relies on the theorem proving algorithm E |=a
alg t, which

conservatively approximates the validity judgment E |= t.
Like the subtype algorithm, the theorem proving algorithm
returns a 3-valued result a ∈ {√, ?,×}, and includes special
treatment for the type Dynamic:

Requirement 2 (Theorem Proving Algorithm).

1. If E |=
√

alg t then E |= t.

2. If E |=×
alg t then ∀E′, t′ obtained from E and t by

replacing the type Dynamic by any type, we have that
E′ 6|= t′.

Our current theorem proving algorithm translates the
query E |=a

alg t into input for the Simplify theorem prover
(Detlefs et al. 2005). For example, the query

x : {x :Int |x ≥ 0} |=a
alg x + x ≥ 0

is translated into the Simplify query:

(IMPLIES (>= x 0) (>= (+ x x) 0))

for which Simplify returns Valid, and so a =
√

.
For more complex queries that cannot be expressed in

Simplify’s input language (involving recursive definitions,
etc), our algorithm simply returns “?”.

One interesting issue arises with queries such as:

x : Int |=a
alg x ∗ x ≥ 0

Simplify fails to prove this query, but since Simplify is in-
complete for arbitrary multiplication, we return “?“ instead
of “×”. The theorem proving algorithm returns “×” for a
query only if Simplify is complete on that query and still
fails to find a proof. We currently assume that Simplify is
complete for linear integer arithmetic. Simplify has very ef-
fective heuristics for integer arithmetic, but does not fully
satisfy this specification; we plan to replace it with an alter-
native prover that is complete for this domain.

7. Experimental Results

We evaluated the Sage language, type system, and im-
plementation on a number of example programs. The pro-
gram arith.sage defines and uses a number of mathemat-
ical functions, such as min, abs, and mod, where refinement
types provide precise specifications. The programs bst.sage
and heap.sage implement and use binary search trees and
heaps, and the program polylist.sage defines and ma-
nipulates polymorphic lists. The types of these data struc-
tures ensure that every operation preserves key invariants.
The program stlc.sage implements a type checker and
evaluator for the simply-typed lambda calculus (STLC),
where Sage types specify that evaluating an STLC-term
preserves its STLC-type. We also include the sorting al-
gorithm mergesort.sage, as well as the regexp.sage and
printf.sage examples discussed earlier.

Figure 10 characterizes the performance of the subtype
algorithm on these benchmarks. We consider two configura-
tions of this algorithm, both with and without the theorem
prover. For each configuration, the figure shows the num-
ber of subtyping judgments proved (denoted by

√
), or left

undecided (denoted by ?) — the benchmarks are all well-
typed, so no subtype queries are refuted (denoted by ×).
Note that the theorem prover enables Sage to decide many
more subtype queries. In particular, many benchmarks in-
clude complex refinement types that use integer arithmetic
to specify ordering and structure invariants; theorem prov-
ing is particularly helpful in verifying these benchmarks.
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Figure 10: Subtyping Algorithm Statistics

Lines Without Prover With Prover
Benchmark of code

√
? × √

? ×
arith.sage 45 132 13 0 145 0 0
bst.sage 62 344 28 0 372 0 0
heap.sage 69 322 34 0 356 0 0
mergesort.sage 80 437 31 0 468 0 0
polylist.sage 397 2338 5 0 2343 0 0
printf.sage 228 321 1 0 321 1 0
regexp.sage 113 391 2 0 391 2 0
stlc.sage 227 677 11 0 677 11 0
Total 1221 4962 125 0 5073 14 0

Our subtyping algorithm performs quite well and ver-
ifies a large majority of subtype tests performed by the
compiler. Only a small number of undecided queries result
in casts. For example, in regexp.sage, Sage cannot stat-
ically verify subtyping relations involving regular expres-
sions (they are checked dynamically) but it statically ver-
ifies all other subtype judgments. Some complicated tests in
stlc.sage must also be checked dynamically. As described
earlier, printf.sage includes a single cast that enforces the
specification of printf.

Despite the use of a theorem prover, type checking times
for these benchmarks are quite manageable. On a 3GHz Pen-
tium 4 Xeon processor running Linux 2.6.14, type checking
required fewer than 10 seconds for each of the benchmarks,
except for polylist.sage which took approximately 18 sec-
onds. We also measured the number of evaluation steps re-
quired during each subtype test. We found that 83% of the
subtype tests required no evaluation, 91% required five or
fewer steps, and only a handful of the the tests in our bench-
marks required more than 50 evaluation steps.

Many opportunities remain for further improvement,
both in the Sage implementation itself, and in its appli-
cation to more substantial programs. Nevertheless, this pre-
liminary study suggests that, even though Sage supports
an expressive and undecidable type system, the techniques
of this paper are sufficiently precise to support practical
programming with these rich types.

8. Related Work

The enforcement of complex program specifications, or con-
tracts, is the subject of a large body of prior work (Par-
nas 1972; Meyer 1988; Luckham 1990; Findler and Felleisen
2002; Blume and McAllester 2004; Findler and Blume 2006).
Since these contracts are typically not expressible in classi-
cal type systems, they have previously been relegated to
dynamic checking, as in, for example, Eiffel (Meyer 1988),
whose expressive contract language is strictly separated from
its type system. Hybrid type checking extends contracts with
the ability to check many properties at compile time. Meu-
nier et al have also investigated statically verifying contracts
via set-based analysis (Meunier et al. 2006).

Recent work on advanced type systems has influenced our
choice of how to express program invariants. In particular,
Freeman and Pfenning (1991) extended ML with another
form of refinement types, and Xi and Pfenning (1999) have
explored applications of dependent types in Dependent ML.
Decidability of type checking is preserved by appropriately
restricting which terms can appear in types. Despite these
restrictions, a number of interesting examples can be ex-
pressed. Our system of dependent types extends theirs with
arbitrary executable refinement predicates, and the hybrid

type checking infrastructure copes with the resulting un-
decidability. In a complementary approach, Chen and Xi
(2005) address decidability limitations by providing a mech-
anism through which the programmer can provide proofs of
subtle properties in the source code.

Recently, Ou et al. (2004) developed a dependent type
system that also leverages dynamic checks. In comparison
to Sage, their system is less expressive but decidable, and
they leverage dynamic checks to reduce the need for precise
type annotations in explicitly labeled regions of programs.

Barendregt (1991) used the unification of types and terms
to allow computations over types while simplifying the un-
derlying theory. The language Cayenne adopts this approach
and copes with the resulting undecidability of type checking
by allowing a maximum number of compile-time evaluation
steps before reporting to the user that typing has failed (Au-
gustsson 1998). Hybrid type checking differs in that instead
of rejecting subtly well-typed programs outright, it provi-
sionally accepts them and then performs dynamic checking
where necessary.

Concurrent with this work, Siek and Taha (2006) intro-
duced a similar notion of Dynamic that enables clean inter-
operation between statically- and dynamically-typed code.
Their initial work was for the simply-typed lambda-calculus,
and they have since extended these ideas to support ob-
jects (Siek and Taha 2007). Other authors have consid-
ered pragmatic combinations of both static and dynamic
checking (Abadi et al. 1989; Henglein 1994; Thatte 1990).
For Scheme, soft type systems (Fagan 1990; Wright and
Cartwright 1994; Aiken et al. 1994) prevent some basic type
errors statically, while checking other properties at run time.

The limitations of purely-static and purely-dynamic ap-
proaches have also motivated other work on hybrid analyses.
For example, CCured (Necula et al. 2002) is a sophisticated
hybrid analysis for preventing the ubiquitous array bounds
violations in C programs. Although the static analysis was
initially used only to optimize the run-time analysis, it has
recently been extended with the ability to detect errors at
compile time (Condit et al. 2007).

The static checking tool ESC/Java (Flanagan et al. 2002)
supports expressive JML specifications (Leavens and Cheon
2005). However, ESC/Java’s error messages may be caused
either by incorrect programs or by limitations in its own
analysis, and thus it may give false alarms on correct (but
perhaps complicated) programs. The Spec# programming
system extends C# with expressive specifications (Barnett
et al. 2005), which are enforced dynamically, and can be
also checked statically via a separate tool. The system is
somewhat less tightly integrated than in Sage, and so static
verification does not automatically remove corresponding
dynamic checks.

9. Conclusions and Future Work

This paper explores an unusual approach to the design of
a typed programming language. In contrast to traditional
decidable type systems, Sage’s type system is a synthesis
of three highly expressive yet undecidable concepts: first-
class types, general refinement types, and the type Dynamic.
The Sage compiler integrates several techniques (theorem
proving, compile-time evaluation, and a counter-example
database) that perform static type checking on a “best
effort” basis, but relies on dynamic type casts to enforce
soundness in particularly complicated situations.

Overall, this design works quite well. The resulting lan-
guage is small yet surprisingly powerful. It supports very
precise type specifications, but does not demand them; omit-
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ted type annotations default to Dynamic. Computation and
function abstraction work equivalently and cleanly on both
types and terms. A notion of reflection is provided for free,
since types are first-class values. All types, including com-
plex function and refinement types, can be enforced via run-
time casts, and static and dynamic type checks co-operate
closely to ensure type soundness. Experimental results show
that Sage can verify most or all correctness properties at
compile time.

Many opportunities remain for future work. We plan to
integrate randomized or directed (Godefroid et al. 2005)
testing to refute additional validity queries, thereby detect-
ing more errors at compile time. The benefits of the counter-
example database can be amplified by maintaining a single
(perhaps distributed, peer-to-peer) repository for all users of
Sage. We also plan to investigate type inference for Sage,
perhaps leveraging the flexibility of the type Dynamic in par-
ticularly complicated situations. Finally, we hope to adapt
ideas from Sage to a more mainstream language, perhaps by
extending the Glasgow Haskell compiler (Jones et al. 1993).
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Appendix

We present the formal development of Sage and the proofs stated earlier in the paper in this Appendix. In
Appendix A, we state the key correctness theorems for Sage. In Appendix B, we prove a number of useful
properties regarding the Sage subtype relation. We prove the standard progress and preservation theorems
for the Sage type system in Appendix C and D, respectively. Finally, we prove the soundness of Sage’s
hybrid type checking strategy in Appendix E.

A. Theorem Statements

We prove correctness of Sage’s type system and semantics with respect to an augmented typing relation
E ⊢r t : T that extends the relation E ⊢ t : T with the following rule, allowing any closed term to be given
any correct refinement type:

Type rules E ⊢r t : T

∅ ⊢r s : T ∅ ⊢r {x :T | t} : *
∅ |= t[x := s]

∅ ⊢r s : {x :T | t} [T-Refine]

This rule (while not necessarily useful in the original type system) is essential for proving that types are
preserved under evaluation. Moreover, for technical reasons, including it in the original type system would
prevent us from guaranteeing that the compilation process compiles all well-typed programs.

We also formalize well-formed environments as follows. The only unusual aspect of our environments is
that we sometimes have values bound to the names in in the environment, in which case those values must
be well-typed.

Well-formed environment ⊢ E

⊢ ∅ [We-Empty]

⊢ E E ⊢ T : *

⊢ E, x : T
[We-Ext1]

⊢ E E ⊢ T : * E ⊢ v : T

⊢ E, x = v : T
[We-Ext2]

In the following statement of soundness, a failed cast is a term of the form 〈T 〉 v that is a normal form.

Theorem 3 (Progress). Suppose ∅ ⊢r t : T . If t is a normal form then it is either a value or contains a
failed cast.

Theorem 4 (Preservation). If ∅ ⊢r s : T and s −→ t then ∅ ⊢r t : T .

Theorem 5 (Soundness of Hybrid Type Checking).

1. If E ⊢ s →֒ t : T and ⊢ E then E ⊢ t : T .

2. If E ⊢ s →֒ t ↓ T and ⊢ E then E ⊢ t : T .

These three theorems are proved in Appendices C–E below.

B. Preliminary Lemmas

This section states and proves several properties of type system used in the rest of the development.
Throughout this appendix, we make use of our axiomatization of theorem proving, described on page 7.
For convenience, we repeat those axioms here.

Property 6 (Theorem Proving Axioms). The theorem proving judgment E |= t conforms to the follow-
ing axioms:

1. Faithfulness: If t −→∗ true then E |= t. If t −→∗ false then E 6|= t.

2. Hypothesis: If (x : {y :S | t}) ∈ E then E |= t[y := x].

3. Weakening: If E, G |= t then E,F, G |= t.

4. Substitution: If E, (x : S), F |= t and E ⊢ s : S then E, F [x := s] |= t[x := s].

5. Exact Substitution: E, (x = v : S), F |= t if and only if E, F [x := v] |= t[x := v].
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6. Preservation: If s −→∗ t, then E |= C[s] if and only if E |= C[t].

7. Narrowing: If E, (x : T ), F |= t and E ⊢ S <: T then E, (x : S), F |= t.

B.1 Substitution

This first core lemma must be proved simultaneously for a variety of judgments.

Lemma 7 (Substitution). Suppose E and F are environments; t, s, S, and T are terms (types). If
E, x : S, F ⊢r t : T and E ⊢r s : S, and ⊢ E, x : S, F then the following statements hold (where θ = [x := s],
and if the environment contains x = v : S then we require that s = v)

1. If ⊢ E, x : S, F then ⊢ E, θF

2. If E, x : S, F ⊢ T <: U then E, θF ⊢ θT <: θU .

3. If E, x : S, F ⊢r t : T then E, θF ⊢r θt : θT .

Proof: The proof proceeds by induction, using a rather complex induction scheme. The “outermost”
induction is on the length of E. Since the use of this inductive process is limited to a very small part of the
proof, we do not duplicate the parts of the proof that are independent of the length of E.

The proof then proceeds by mutual induction on the derivations in the antecedents (even though the
environment grows in some subderivations, the prefix E does not, so the nested induction is well-founded)

This structural induction is lexicographic in the following sense: For parts 3 and 2 assume that part 1
holds for the input environment, even though it does not appear as a subderivation, while in the proof of
part 1 we assume only that parts 2 and 3 hold for strict subderivations.

1. Now we proceed with the inductive cases:

• [We-Empty]: Trivial
• [We-Ext1] or [We-Ext2]: Then either F = ∅, in which case the conclusion of the lemma is the

antecedents of the rule, or F = F ′, y : S, in which case the lemma holds by induction on each
antecedent.

2. Assume E,x : S, F ⊢ T <: U and proceed by induction on the derivation:

• [S-Refl], [S-Dyn]: Trivial.
• [S-Fun], [S-Ref-L], [S-Ref-R], [S-Eval]: These cases follow immediately from the inductive hypothesis.
• [S-Var]: There are several cases to consider, depending on whether the definition used is in E or F or

is x itself.

The definition is in E : We then have:

E = E1, y = v : R, E2

E1, πE2, x : πS, πF ⊢ πT <: πU

where π = [y := v].
Since ⊢ E we know that E1 ⊢r v : R. By induction, using part (1), we then have that

⊢ E1, πE2, x : πS, πF We will now also use the induction on E; because |E1| < |E| the substitution
lemma holds for [y := v] so

E1, πE2 ⊢r πs : πS

Letting ϑ = [x := πs] allows us to conclude by induction on the subderivation that

E1, πE2, ϑ(πF ) ⊢ ϑ(πT ) <: ϑ(πU)

Note that v can be typed without x in the environment, so x 6∈ FV (v). Thus,

ϑ ◦ π = [x := πs] ◦ [y := v]
= [y := ϑv] ◦ [x := π2s]
= [y := v] ◦ [x := π2s] because x is not free in v
= π ◦ [x := πs] = π ◦ θ because π is idempotent

Then, substituting according to this equality,

E1, πE2, π(θF ) ⊢ π(θT ) <: π(θU)

Then from [S-Var]

E1, y = v : R,E2, θF ⊢ θT <: θU

which is exactly

E, θF ⊢ θT <: θU

The definition is in F : In this case we have that

F = F1, y = v : R, F2

E, x : S, F1, πF2 ⊢ πT <: πU
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By part 1 we know ⊢ E, x : S, F1, πF2, so letting ̟ = [y := θv], we have by induction,

E, θF1, θ(πF2) ⊢ θ(πT ) <: θ(πU)

Note that y 6∈ FV (s) because s typed without y in the environment. Thus,

θ ◦ π = [x := s] ◦ [y := v]
= [x := s] ◦ [y := θv]
= [y := θv] ◦ [x := ̟s]
= ̟ ◦ θ because y not free in s

And substituting according to this,

E, θF1, ̟(θF2) ⊢ ̟(θT ) <: ̟(θF )

Hence by [S-Var]

E, θF1, y = θv : R, θF2 ⊢ θT <: θU

Which is exactly

E, θF ⊢ θT <: θU

The definition is x = v : S: Then we have

v = s
EπF ⊢ πT <: πU

The second statement is exactly the desired conclusion.

3. Consider the final rule applied in E, x : S, F ⊢r t : T .

• [T-Var]: t = y for some variable y. There are several cases to consider:

y = x: In this case,

t = y = x

and applying θ yields

θt = θy = s
T = S = θS = θT

Thus,

E ⊢r s : S ≡ E ⊢r θt : θT

and E, θF ⊢r θt : θT follows by weakening.

y 6= x: In this case, θt = θy = y. There are several cases to consider:

− y : T ∈ E: By applying θ, we have

θT = T

and it follows that

y : θT ∈ E, θF

By rule [T-Var],

E, θF ⊢r y : T

which is E, θF ⊢r θt : θT .

− y : T ∈ F : Applying θ yields

y : θT ∈ E, θF

which permits us to conclude via rule [T-Var] that

E, θF ⊢r y : θT

which is E, θF ⊢r θt : θT .

• [T-Sub]: In this case,

E,x : S, F ⊢r t : S
E,x : S, F ⊢ S <: T

By induction,

E, θF ⊢r θt : θS

and using statement 2 we can apply statement 2 to conclude that

E, θF ⊢ θS <: θT

Thus, by rule [T-Sub], we can derive

E, θF ⊢r θt : θT
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• [T-Refine]: In this case,

T = {y :S | p}
E,x : S, F ⊢r t : S
E,x : S, F ⊢r S : *
E,x : S, F |= p[y := t]

By induction,

E, θF ⊢r θt : θS
E, θF ⊢r θS : *

We may then use Property 6 (Substitution) to show that

E, θF |= θ(p[y := t])

which can be rewritten as

E, θF |= (θp)[y := θt]

It then follows from rule [T-Refine] that

E, θF ⊢r θt : θT

• [T-Const]: Trivial.
• [T-Fun], [T-Arr], [T-Let], [T-App]: These cases follow immediately from the inductive hypothesis.

�

B.2 Properties of Subtyping

A first simple property is that subtyping respects definitions in the environment

Lemma 8 (Reflexivity of subtyping under exact substitution). Let θ = [x := v]. For any types S, T
and environments E, F , if E ⊢ v : T then E, x = v : T, F ⊢ S <: θS and E, x = v : T, F ⊢ θS <: S

Proof: As substitutions are idempotent, θS = θ2S so by [S-Refl] E, θF ⊢ θS <: θ2S. Then by [S-Var] we
have E, y = v : T, F ⊢ S <: θS, and the symmetric relationship by an analogous proof. �

Next we prove Narrowing (that when a type in the environment is made “smaller” the subtyping judgment
still holds)

Lemma 9 (Narrowing of Subtyping).
If ⊢ E, x : B, F and E, x : B, F ⊢ S <: T and E ⊢ A <: B then E, x : A,F ⊢ S <: T .
If (x = v : B) is in the environment, then we additionally require E ⊢ v : A.

Proof: We proceed by induction on the derivation of E,x : B, F ⊢ S <: T , considering the final rule
applied.

• [S-Refl], [S-Dyn]: Trivial.
• [S-Fun]: From the hypotheses of this rule, it must be that

S = y : S1 → S2 T = y : T1 → T2 E, x : B, F ⊢ T1 <: S1 E, x : B, F, y : T1 ⊢ S2 <: T2

By induction, we know that E, x : A, F ⊢ T1 <: S1 and E, x : A, F, x : T1 ⊢ S2 <: T2. By [S-Fun], we can
conclude that E, x : A, F ⊢ S <: T .

• [S-Ref-L]: From the hypotheses of this rule, it must be that

S = Refine W f E, x : B, F ⊢ W <: T

By induction, we know that E, x : A, F ⊢ W <: T . Then by application of [S-Ref-L] we can conclude
that E, x : A,F ⊢ S <: T holds.

• [S-Ref-R]: From the hypotheses of this rule, it must be that

T = Refine W f E, x : B, F ⊢ S <: W E, x : B, F, x : S |= f x

By induction, we know that E, x : A,F ⊢ S <: W . By the Narrowing Axiom of the theorem proving
judgment E, x : A,F, x : S |= f x holds. These two facts applied to [S-Ref-R] rule allows us to conclude
that E, x : A,F ⊢ S <: T .

• [S-Eval-L] and [S-Eval-R]: These cases follow easily from the inductive hypothesis.
• [S-Var]: From the hypotheses of this rule, it must be that

(y = v : R) ∈ E, x : V, F

so let θ = [y := v] and there are three cases to consider:

(y = v : R) ∈ F : this case is immediate by induction
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y = x: In this case, T = B and

(x = v : B) ∈ E, x = v : B,F E, θF ⊢ θS <: θV

Then simply apply [S-Var] to conclude E, x = v : A, F ⊢ S <: V (the environment is well-formed
because we require E ⊢ v : A). This is the same as E,x = v : A, F ⊢ S <: T

(y = v : R) ∈ E:
Since the environment is well-formed, we know that E = E1, y = v : R, E2 where E1 ⊢ v : R.

From the antecedent of [S-Var], we have E1, θE2, x : θB, θF ⊢ θS <: θT . By Lemma 7 (Substitution)
we have that E1, θE2 ⊢ θA <: θB

Applying induction, we narrow the environment to conclude E1, θE2, x : θA, θF ⊢ θS <: θT and
then apply [S-Var] to finish with

E, x : A, F ⊢ S <: T

�

Lemma 10 (Preservation of Subtyping Under Evaluation). For any environment E, if t −→∗ t′ then

1. E ⊢ C[t] <: C[t′] and

2. E ⊢ C[t′] <: C[t].

Proof: We proceed to show (1) by induction on the derivation of t −→∗ t′. If zero evaluation steps are
performed, then t = t′ and E ⊢ C[t] <: C[t′] follows via rule [S-Refl]. The inductive case follows from
rule [S-Eval-R], which shows that the necessary subtyping relationship is preserved by a single evaluation
step. Case (2) is similar, but uses rule [S-Eval-L] in the inductive case. �

Subtyping is also transitive, as shown below.

Lemma 11 (Transitivity of Subtyping). If ⊢ E and E ⊢ S <: T and E ⊢ T <: U then E ⊢ S <: U .

Proof: We proceed by induction on the derivation of E ⊢ T <: U and consider each possible rule used in
the last step of that derivation:

• [S-Refl]: In this case, T = U , so we may immediately conclude that E ⊢ S <: U .
• [S-Dyn]: In this case, we have that U = Dynamic, and E ⊢ S <: U follows via rule [S-Dyn].
• [S-Fun]: In this case, the following four statements must be true:

T = x : T1 → T2 U = x : U1 → U2 E ⊢ U1 <: T1 E,x : U1 ⊢ T2 <: U2

We now proceed by induction on the derivation of E ⊢ S <: T and consider each possible rule used in
the last step of that derivation:

[S-Refl]: Trivial.

[S-Dyn]: T must be Dynamic, which contradicts the statement that T = x : T1 → T2. Therefore, this
case cannot happen.

[S-Var]: In this case,

E = E1, x = v : W, E2 E1, E2[x := v] ⊢ S[x := v] <: T [x := v]

By Lemma 7 (Substitution), we can also conclude that

E1, E2[x := v] ⊢ T [x := v] <: U [x := v]

By induction,

E1, E2[x := v] ⊢ S[x := v] <: U [x := v]

and by rule [S-Var], we have that

E ⊢ S <: U

[S-Eval-L]: In this case,

S = C[s] s −→ s
′

E ⊢ C[s′] <: T

By induction, E ⊢ C[s′] <: U , and we may conclude that E ⊢ S <: T via rule [S-Eval-L].

[S-Eval-R]: Similar to previous case.

[S-Fun]: In this case,

S = x : S1 → S2 E ⊢ T1 <: S1 E, x : T1 ⊢ S2 <: T2

By induction, we may conclude that E ⊢ U1 <: S1 holds. Since E ⊢ U1 <: T1, Lemma 9 in-
dicates that E, x : U1 ⊢ S2 <: U2. These two statements enable us to conclude that E ⊢
x : S1 → S2 <: x : U1 → U2 via rule [S-Fun].
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[S-Ref-L]: In this case,

S = (Refine V f) E ⊢ V <: T

and we may conclude that E ⊢ V <: U by induction. Rule [S-Ref-L] then indicates that E ⊢
(Refine V f) <: U .

[S-Ref-R]: In this case, T = Refine V f , but this cannot occur because (Refine V f) 6= x : T1 → T2.

Thus, regardless of how we derive that E ⊢ S <: T , we may conclude E ⊢ S <: U .
• [S-Var]: In this case,

E = E1, x = v : W,E2 E1, E2[x := v] ⊢ T [x := v] <: U [x := v]

By Lemma 7, we can also conclude that

E1, E2[x := v] ⊢ S[x := v] <: T [x := v]

By induction,

E1, E2[x := v] ⊢ S[x := v] <: U [x := v]

and by rule [S-Var], we have that

E ⊢ S <: U

• [S-Eval-L]: In this case,

T = C[t] t −→ t
′

E ⊢ C[t′] <: U

We now proceed by induction on the derivation of E ⊢ S <: T , and consider each possible rule used in
the last step of that derivation. All are similar to other cases presented above and below.

• [S-Eval-R]: In this case,

U = C[t] t −→ t
′

E ⊢ T <: C[t′]

By induction, E ⊢ S <: C[t′], and we may conclude that E ⊢ S <: U via rule [S-Eval-R].
• [S-Ref-L]: In this case, the following statements must be true:

T = Refine V f E ⊢ V <: U

We now proceed by induction on the derivation of E ⊢ S <: T and consider each possible rule used in
the last step of that derivation:

[S-Refl], [S-Dyn], [S-Var], [S-Eval-R], and [S-Eval-L]: Similar to above.

[S-Fun]: In this case, T = x : T1 → T2, which contradicts the assumption that T = Refine V f .
Therefore, this case cannot happen.

[S-Ref-L]: In this case,

S = (Refine W f
′) E ⊢ W <: T

and we may conclude that E ⊢ W <: U by induction. Rule [S-Ref-L] then indicates that E ⊢
(Refine W f ′) <: U .

[S-Ref-R]: In this case, since we have assumed T = (Refine V f), we know that

E ⊢ S <: V E, x : S |= f x

By induction, E ⊢ V <: U , and we may conclude that E ⊢ (Refine V f) <: U via rule [S-Ref-L].

Thus, regardless of how we derive that E ⊢ S <: T , we may conclude E ⊢ S <: U .
• [S-Ref-R]: In this case, the following statements must be true:

U = Refine V f E ⊢ T <: V E, x : T |= f x

By the induction, we know that E ⊢ S <: V . Lemma 9 implies that E, x : S |= f x. Thus, E ⊢
S <: Refine V f follows via rule [S-Ref-R].

Thus, transitivity holds for all possible derivations of the two hypotheses. �

Corollary 12. Suppose ⊢ E, then

1. If E ⊢ C[s] <: T and s −→ s′ then E ⊢ C[s′] <: T .

2. If E ⊢ S <: C[t] and t −→ t′ then E ⊢ S <: C[t′].

Proof: Follows from Lemma 10 and Lemma 11. �

Subtyping is also preserved under environment weakening. This relies on our assumption the theorem proving
judgment E |= t is also preserved under weakening, as described on page 7.

Lemma 13 (Weakening of subtyping). For all environments E, F , and G with pairwise disjoint domains,
and types S and T , if E,G ⊢ S <: T then E, F, G ⊢ S <: T .
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Proof: By induction on the derivation E, G ⊢ S <: T , and case analysis of the last rule used.

• [S-Ref-R]:: As hypotheses to that rule,

T = {x :T1 | t}
E, G, x : S |= t
E, G ⊢ S <: T1

By induction, we may conclude that

E, F, G ⊢ S <: T1

From Property 6 (Weakening), we have

E, F, G, x : S |= t

which then enables us to show via rule [S-Ref-R] that

E, F, G ⊢ S <: T

• [S-Refl] and [S-Dyn]:: Trivial, since the environment is irrelevant.
• [S-Fun], [S-Ref-L], [S-Eval-L], [S-Eval-R], and [S-Var]: These follow immediately from the inductive

hypothesis.

�

The next technical lemma describes properties of the unrefine function, which strips outer refinements
from an inner function or base type.

Finally, we show that, given a type T , removing outer refinements from T via the function unrefine(T ) yields
a supertype of T . For example, Int is a supertype of {x :Int | f}.

Lemma 14 (Unrefine). For all U and E, if unrefine(U) is defined, then E ⊢ U <: unrefine(U).

Proof: We proceed by induction on the computation of unrefine(U):

• U = Refine T f : In this case, unrefine(U) = unrefine(T ). By the induction hypothesis, E ⊢
T <: unrefine(T ) holds. By rule [S-Ref-L], we know that E ⊢ Refine T f <: T , and by Lemma 11,
it must be that E ⊢ Refine T f <: unrefine(T ). Hence E ⊢ U <: unrefine(U).

• ∃U ′ such that U → U ′: In this case, unrefine(U) = unrefine(U ′). By the induction hypothesis,
E ⊢ U ′ <: unrefine(U ′) holds. Using the empty context in Lemma 10 we may conclude that E ⊢ U <: U ′.
Together, we may infer that E ⊢ U <: unrefine(U ′) via Lemma 11, and thus that E ⊢ U <: unrefine(U).

• U = x :S → T : In this case, unrefine(U) = x :S → T . By rule [S-Refl], E ⊢ x :S → T <: x :S → T .

�

The next two lemmas show inversion properties of subtyping. The first shows that the standard covariant
and contravariant subtyping relationships hold for the components of two related function types. The second
states a similar property for refinement types.

Lemma 15 (Inversion of Function Subtyping). If ⊢ E and E ⊢ x :S1 → S2 <: x :T1 → T2 then E ⊢
T1 <: S1 and E, x : T1 ⊢ S2 <: T2.

Proof: By induction on the subtyping derivation E ⊢ x :S1 → S2 <: x :T1 → T2.

• [S-Dyn], [S-Ref-L], and [S-Ref-R]: These rules cannot conclude the desired statement.
• [S-Refl]: Then T1 = S1 and T2 = S2 so we can apply [S-Refl] to each.
• [S-Fun]: The antecedents of the rule are exactly the desired conclusions.
• [S-Var]: Then we know E = E1, y = v : U, E2 and E1, θE2 ⊢ θ(x :S1 → S2) <: θ(x :T1 → T2) where

θ = [y := v].
By induction, distributing θ over the arrows, we have that E1, θE2 ⊢ θT1 <: θS1 and can apply [S-Var]

to conclude E ⊢ T1 <: S1. In similar fashion, E, x : T1 ⊢ S2 <: T2 follows immediately from the inductive
hypothesis.

• [S-Eval-R], and [S-Eval-L]: We consider [S-Eval-L]. The only evaluation rule that can apply to x :
S1 → S2 is [E-Compat] so suppose evaluation proceeds by evaluating S1 −→ S′

1, and that E ⊢
x :S′

1 → S2 <: x :T1 → T2. Then by induction we know that E ⊢ T1 <: S′
1, and applying [S-Eval-R] we

obtain E ⊢ T1 <: S1. Evaluation in other contextual positions and the case for [S-Eval-L] are analogous.

�

Lemma 16 (Inversion of Refinement Subtyping). If ⊢ E and E ⊢ S <: {x :T | p} then E ⊢ S <: T and
E, x : S |= p.

Proof: We proceed by induction on the subtyping derivation, considering the last rule used.
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• [S-Refl]: Given that S = {x :T | p}, we may conclude that E, x : {y :T | p} |= p by Property 6 (Hypothesis).
It then follows that E ⊢ S <: T via rules [S-Refl] and [S-Ref-L].

• [S-Dyn], [S-Fun]: These cases cannot happen, given the hypotheses.
• [S-Ref-R]: Trivial.
• [S-Ref-L]: In this case,

S = {y :S1 | q}
E ⊢ S1 <: {x :T | p}

By induction, we conclude that

E, x : S1 |= p
E ⊢ S1 <: T

Using rules [S-Refl] and [S-Ref-L], we may conclude that E ⊢ S <: S1 and by Property 6 (Narrowing),
E, x : S |= p. We may then conclude that E ⊢ S <: T via rule [S-Ref-L].

• [S-Eval-L]: In this case,

S = CS[s]
s −→ s′

E ⊢ CS[s′] <: {x :T | p}
By induction, we know that

E, x : CS[s′] |= p
E ⊢ CS[s′] <: T

Lemma 10 (Preservation of Subtyping under Evaluation) indicates that E ⊢ S <: CS[s′], and Property 6
(Narrowing) enables us to conclude that E, x : S |= p. Rule [S-Eval-L] then shows E ⊢ CS[s] <: T .

• [S-Eval-R]:

{x :T | p} = CT [t]
t −→ t′

E ⊢ S <: CT [t′]

In this case, the hole in CT appears either in T or in p.

The hole appears in T :
Then by induction,

E ⊢ S <: T [t′]

We may then conclude via rule [S-Eval-R] that

E ⊢ S <: T [t]

The hole appears in p:
Then by induction,

E,x : S |= p[t′]

Using Property 6 (Preservation), we have that

E,x : S |= p[t]

• [S-Var] : As hypotheses to this rule,

E = E1, y = v : U, E2

E1, E2[y := v] ⊢ S[y := v] <: {x :T [y := v] | p[y := v]}
By induction,

E1, E2[y := v], x : S[y := v] |= p[y := v]
E1, E2[y := v] ⊢ S[y := v] <: T [y := v]

By rule [S-Var],

E ⊢ S <: T

which then allows us to conclude via Property 6 (Exact Substitution) that

E, x : S |= p

�
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C. Progress

We now turn our attention to showing that evaluation of well-typed terms proceeds until we are left with a
value or encounter a failed cast. We first characterize all possible expression forms that are evaluated at run
time, as well as the types that they may have. The canonical types (those which cannot be evaluated) are
defined as follows.

Definition 17 (Canonical Types). A term T is a canonical type if it is in one of the following forms: *,
Unit, Int, Bool, x :S → U , Refine S t, or Dynamic.

All values encountered at run time can be assigned one of these canonical types, as stated in the following
lemma. This lemma also defines the set of values VT belonging to each canonical type T .

Lemma 18 (Canonical Shapes). If ∅ ⊢r v : T , and v is a normal form, then it must be the case that
∅ ⊢r T : * and that T is a canonical type. For each T there is also a fixed set of canonical shapes VT , such
that if ∅ ⊢r v : T then v ∈ VT . The sets VT are defined as follows:

1. V* = {*, Int, Bool, Unit, x :S → U, Refine S t, fix * v, Dynamic}.
2. VInt = {n | n ∈ Z}.
3. VBool = {true, false}.
4. VUnit = {unit}.
5. Vx:S→T = {λx :S′. t, not, if, if U , if U b, if U b v, +, + n, eq, eq U , eq U v1, cast, cast U , fix,

fix U , Refine, Refine U}, where b ∈ {true, false}.
6. VRefine T t = VT (by definition).

7. VDynamic = all values.

Proof: We proceed by induction on the derivation of ∅ ⊢ v : T . Note that the inductive hypothesis is not
strengthened to allow arbitrary environments.

• [T-Var], [T-Let]: This case cannot occur, since this rule does not assign types to values.
• [T-Var]:, This rule cannot apply because the environment is empty.
• [T-Const]: Here, v can be any constant from Figure 4:

If v ∈ {*, Unit, Bool, Int, Dynamic}, then T = *.

If v = unit then T = Unit.

If v ∈ {true, false} then T = Refine Bool t.

If v ∈ {n | n ∈ Z} then T = Refine Int t.

Otherwise, T = x :S → T .

• [T-Fun]: Here, v must be λx : S. t and T must be x : S → T (there is no induction on the body of the
function, because the canonical shape is already determined by the rule)

• [T-Arrow]: Here, v must be x :S → T and T must be *.
• [T-App]: If v = Refine T ′ v or v = fix * v then T = *. Otherwise, T = x :S → T .
• [T-Refine]: We have that VRefine T t = VT , so the theorem holds by the inductive hypothesis.
• [T-Sub]: We know that ∅ ⊢r v : S, so by the induction hypothesis we know that v has one of the canonical

shapes of type S. We must show that if ∅ ⊢ S <: T , then VS ⊆ VT . We proceed by induction on the
derivation of ∅ ⊢ S <: T :

[S-Refl]: Trivial, since S = T .

[S-Dyn]: VT is the set of all values, so VS must be included in it.

[S-Fun]: S and T have the same shape, so VS = VT .

[S-Ref-L]: Let S = Refine S′ s, since S must be a refinement type. By the antecedent of [S-Ref-L],
∅ ⊢ S′ <: T so VS′ ⊆ VT . By induction, VS = VRefine S′ f = VS′ , so VS ⊆ VT .

[S-Ref-R]: Let T = Refine T ′ t, since T must be a refinement type. By the antecedent of [S-Ref-R],
∅ ⊢ S <: T ′, so VS ⊆ VT ′ . By induction, VT = VRefine T ′ f = VT ′ , and it then follows that VS ⊆ VT .

[S-Eval-L]: We know that ∅ ⊢ C[s′] <: T by the antecedent of [S-Eval-L]. Therefore, by induction,
VC[s′] ⊆ VT . By Lemma 10 (Preservation of Subtyping) and induction, we then know that VC[s] =
VC[s′]. Thus, VC[s] ⊆ VT .

[S-Eval-R]: We know that ∅ ⊢ S <: C[t′] by the antecedent of [S-Eval-R]. Therefore, by induction,
VS ⊆ VC[t′]. By Lemma 10 (Preservation of Subtyping), and induction, we then know that VC[t] =
VC[t′]. Thus, VS ⊆ VC[t].

[S-Var]: This case cannot occur, since E is empty.

�
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t1 Applicable Evaluation Rule
λx :S. t [E-App]
not [E-Not1] or [E-Not2]
if value
if U value
if U v1 value
if U true v [E-If1]
if U false v [E-If2]
+ value
+ n [E-Add]
eq value
eq U value
eq U v [E-Eq]
Refine value
Refine U value
fix value
fix U [E-Fix]
cast value
cast U one of [E-Cast-...], or none if the cast fails

Table 1. Applicable evaluation rules for t1 t2. (If t1 t2 is a value, then no rule will apply.)

The previous two lemmas enable us to now prove that evaluation of well-typed programs proceeds until
a value is reached or a failed cast is encountered. Specifically, the only normal forms are values of terms
containing a failed cast.

Restatement of Theorem 3 (Progress) Suppose ∅ ⊢r t : T . If t is a normal form then it is either a
value or contains a failed cast.

Proof: We proceed by induction on a derivation of ∅ ⊢r t : T . Assuming that ∅ ⊢r t : T , and that
progress holds for all of the subderivations of t, we show that it holds for t:

• [T-Var]: In this case, t = x. However, this is not possible if ∅ ⊢r t : T .
• [T-Const]: In this case, t = c and t : ty(c), and we already have a value.
• [T-Fun]: In this case, t = λx :S. t and T = (x :S → T ) and S : *, and we already have a value.
• [T-Arrow]: In this case, t = x :S → T and T = * and S : *. Thus, we already have a value.
• [T-Let]: In this case, t = let x = t1 : T1 in t2.

If t1 is not a value, then the context rule [E-Compat] allows t1 to be evaluated. It follows from induction
that progress holds for t1.

If t1 is a value, then [E-Let] applies.

• [T-Sub]: In this case, t = t and the theorem holds by the inductive hypothesis.
• [T-App]: In this case,

t = t1 t2
∅ ⊢r t1 : x :S → T
∅ ⊢r t2 : S

There are three cases to consider:

t1 is not a value: The context rule [E-Compat] allows t1 to be evaluated, and we know by the inductive
hypothesis that progress holds for t1.

t1 is a value but t2 is not a value: The context rule [E-Compat] allows t2 to be evaluated, and we know
by the inductive hypothesis that progress holds for t2.

t1 and t2 are both values: Evaluation can proceed as given in Table 1. Since application is well-typed,
by rule [T-App], we know that t1 must have some function type x :S → T . Hence, t1 must be one of
the values specified in Lemma 18 (Canonical Shape - part 5). Table 1 shows that for each possible
value t1, either

− t1 t2 is a value,

− t1 t2 can be reduced by the given rule,

− or t1 t2 is a failed cast.

• T-Refine: In this case, t = t, an the theorem holds by the inductive hypothesis.

�
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D. Preservation

This section shows that an expression’s type is preserved under evaluation. We begin with the basic fact
that typing is insensitive to the addition of bindings to the environment. First, typing is preserved under
environment weakening.

Lemma 19 (Weakening of Typing). For all environments E, F , and G such that ⊢ E, G and ⊢ E, F, G,
if E, G ⊢r t : T then E,F, G ⊢r t : T .

Proof: We proceed by induction on the structure of the derivation of E, G ⊢r t : T and case analysis of
the last rule used:

• [T-Const], [T-Var]: Trivial.
• [T-Fun], [T-Arrow], [T-App], [T-Let]: The conclusion follows immediately from the inductive hypothesis.
• [T-Sub]: In this case,

E, G ⊢r t : S
E, G ⊢ S <: T

By induction,

E, F, G ⊢r t : S

According to Lemma 13 (Weakening of Subtyping),

E, F, G ⊢ S <: T

We may then use rule [T-Sub] to conclude

E, F, G ⊢r t : T

• [T-Refine]: In this case,

T = {x :S | p}
E, G ⊢r t : S
E, G ⊢r {x :S | p} : *
E, G |= p[x := t]

By induction,

E, F, G ⊢r t : S
E, F, G ⊢r {x :S | p} : *

Property 6 (Weakening) then shows that

E, F, G |= p[x := t]

which allows to conclude via rule [T-Refine] that

E, F, G ⊢r t : T

�

Lemma 20. If E ⊢r λx :S1. t : x :T1 → T2 then E ⊢ T1 <: S1.

Proof: By induction on the derivation of E ⊢r λx :S1. t : x :T1 → T2; only [T-Lam] (where the lemma is
immediate) and [T-Sub] (where the lemma follows by induction) apply. �

Restatement of Theorem 4 (Preservation) If ∅ ⊢r s : T and s −→ t then ∅ ⊢r t : T .

Proof: We proceed by induction on the structure of the derivation E ⊢r s : T and perform case analysis
on the last rule of that derivation:

• [T-Var, T-Const, T-Fun, T-Arrow]: There is no evaluation rule for s, so the theorem is trivially true.
• [T-Sub]: In this case,

∃S. ∅ ⊢ S <: T and ∅ ⊢r s : S

By induction,

∅ ⊢r t : S

Rule [T-Sub] then allows us to conclude

∅ ⊢r t : T

• [T-App]: In this case,

s = s1 s2

∅ ⊢r s1 : x :T1 → T2

∅ ⊢r s2 : T1

T = T2[x := s2]
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There are several cases to consider:

s1 is not a value: Since evaluation is strict, as expressed by the grammar for evaluation contexts E ,
we know that t = s′1 s2 where s1 −→ s′1. By induction, we may then conclude that

∅ ⊢r s′1 : x :T1 → T2

and rule [T-App] shows that

∅ ⊢r t : T2[x := s2]

s1 is a value, but s2 is not a value: Since evaluation is strict, we know that t = s1 s′2 where s2 −→ s′2
By induction,

∅ ⊢r s′2 : T1

and rule [T-App] then shows that

∅ ⊢r s1 s′2 : T2[x := s′2]

From Lemma 10 (Preservation of Subtyping). we know that

∅ ⊢ T2[x := s′2] <: T2[x := s2]

Rule [T-Sub] then shows that

∅ ⊢r t : T2[x := s2]

s1 = λx : S1. t1: In this case, the evaluation rule is [E-App]. Therefore, x : S1 ⊢r t1 : T2. Lemma 20
then shows that

∅ ⊢ T1 <: S1

and rule [T-Sub] can be used to derive

∅ ⊢r s2 : S1

Lemma 7 (Substitution) then concludes that

∅ ⊢r t1[x := s2] : T2[x := s2]

s is a constant other than cast applied to its full arity: We examine the if constant, assuming the
condition is true (the false case is analogous). Recall the type of if is

X :* → b :Bool → ({u :Unit | b} → X) → ({u :Unit | not b} → X) → X

We can then assume that

s1 = ifT true then v1 else v2

where v1 and v2 are values, because of Lemma 18 (Canonical Shapes) and our assumption that the
test is true. Since rule [E-IfTrue] must be used,

t = v1 unit

where ∅ ⊢r v1 : (u :Unit.true → T ). Property 6 (Faithfulness) then shows that

∅ |= true

and we may use rule [T-App] to conclude

∅ ⊢r v1 unit : T

Other reduction rules for non-cast constants are as straightforward.

s = 〈T 〉 s2, where s2 is a value: The values possible for T , which must have type *, are given by
canonical forms:

− T ∈ {*, Int, Bool, Unit}: A simple inspection is sufficient to show that if the cast succeeds then s2

can be assigned type T .

− T = x :T1 → T2: In this case, rule [E-Cast-Fn] requires that

D = domain(s2)
t = λx : T1.〈T2〉 (s2 (〈D〉 x))

We can then easily derive

∅ ⊢r t : x :T1 → T2

− T = Refine T1 f : We assume the cast doesn’t fail (the failure case is vacuous). Thus,

f(〈T1〉 s2) −→∗ true
∅ ⊢r T1 : *

Rule [E-Cast-Refine] then allows us to conclude

t = 〈T1〉 s2
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We can then easily derive (by [T-Cast] followed by [T-App])

∅ ⊢r t : T1

Property 6 (Faithfulness) then shows that

∅ |= f t

which allows us to conclude via rule [T-Refine] that

∅ ⊢r t : Refine T1 f

• [T-Refine]: In this case,

T = {y :S | p}
∅ ⊢r s : S
∅ ⊢r T : *
∅ |= p[y := s]

By induction,

∅ ⊢r t : S

Property 6 (Preservation) then shows that

∅ |= p[y := t]

and we can use rule [T-Refine] to conclude

∅ ⊢r t : T

• [T-Let]: Similar to the case for [T-App].

�

E. Soundness of Hybrid Type Checking

The previous sections are sufficient to now prove the main soundness theorem. We divide the proof into
two parts. The first shows that our algorithmic subtyping algorithm defined in Figure 9 is a conservation
approximation of the subtyping judgment defined in Figure 7. The second part shows the soundness of our
cast insertion algorithm specified in Figure 8.

E.1 Conservativity of Algorithmic Subtyping

As specified in Section 5, we must show the following:

Restatement of Lemma 1 (Subtype Algorithm)

1. If E ⊢
√

alg S <: T then E ⊢ S <: T .

2. If E ⊢×
alg S <: T then ∀E′, S′, T ′ that are obtained from E, S, T by replacing the type Dynamic by any

type, we have that E′ 6⊢ S′ <: T ′.

Proof: This follows immediately from Lemmas 21 and 22 below. �

Lemma 21. If ⊢ E and E ⊢
√

alg S <: T then E ⊢ S <: T .

Proof: By induction on the derivation E ⊢
√

alg S <: T , and case analysis of the last rule used.

• [AS-Dyn-L]: Trivial, since this rule can only conclude “?”.
• [AS-Refl], [AS-Dyn-R], [AS-Fun], [AS-Ref-L], [AS-Ref-R], [AS-Var]: These cases follow immediately, or

from direct application of the inductive hypothesis.
• [AS-Eval-L]: In this case,

S = D[s]
s −→ s′

E ⊢
√

alg D[s′] <: T

Since, syntactically, C = D, we have that D[s] = C[s]. This allows us to conclude that E ⊢ S <: T via
rule [S-Eval].

• [AS-Eval-R]: Similar to the previous case.

�

Lemma 22. If ⊢ E E ⊢×
alg S <: T then ∀E′, S′, T ′ that are obtained from E, S, T by replacing the type

Dynamic by any type, we have that E′ 6⊢ S′ <: T ′.
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Proof: We proceed by induction on the derivation E ⊢×
alg S <: T , and case analysis of the last rule used.

Let

Dyn(T ) = {T ′ | T ′ is obtained from T by replacing each occurrence of Dynamic by any type }

• [AS-Dyn-R], [AS-Refl], [AS-Dyn-L], [AS-Ref-L]: These cases cannot happen, since these rules cannot
conclude “×”.

• [AS-Fun]: In this case,

S = x :S1 → S2

T = x :T1 → T2

and one of the follow holds:

E ⊢×
alg T1 <: S1

E, x : T1 ⊢×
alg S2 <: T2

We assume the first holds (the other case is similar). By induction,

∀S′
1 ∈ Dyn(S1). ∀T ′

1 ∈ Dyn(T1). E 6⊢ T ′
1 <: S′

1

By contrapositive of Lemma 15 (Inversion of function subtyping), which contains the conclusion “If
E 6⊢ T ′

1 <: S′
1 then E 6⊢ x :S′

1 → S′
2 <: x :T ′

1 → T ′
2”, we may conclude the following:

∀S′ ∈ Dyn(S). ∀T ′ ∈ Dyn(T ). E 6⊢ S′ <: T ′

• [AS-Ref-R]: In this case, T = {x :T1 | p}, and one of the following holds:

E, x : S |=×
alg p

E ⊢×
alg S <: T1

We assume the first holds (the other case is similar to the case for [AS-Fun]. By Property 6 (Conserva-
tivity), we know that

∀S′ ∈ Dyn(S). ∀p′ ∈ Dyn(p). E, x : S′ 6|= p

By the contrapositive of Lemma 16 (Inversion of refinement subtyping), we may conclude

∀S′ ∈ Dyn(S). ∀T ′ ∈ Dyn(T ). E 6⊢ S′ <: T ′

• [AS-Var]: In this case,

E = E1, x = v : U, E2

E1, E2[x := v] ⊢×
alg S[x := v] <: T [x := v]

By induction,

∀S′ ∈ Dyn(S[x := v′]). ∀T ′ ∈ Dyn(T [x := v′]). E 6⊢ S′ <: T ′

We only are concerned with those S′ and T ′ that can be rewritten as S′′[x := v′] and T ′′[x := v′] for
some v′ ∈ Dyn(v), i.e. those where x is replaced by the same value. Then for any environment containing
x = v′ : S we have by the contrapositive of Lemma 7 (Substitution) that E′

1, x = v′ : S, E′
2 6⊢ S′′ <: T ′′

where E′
1, x = v′ : S, E′

2 ranges over all of Dyn(E) and S′′ and T ′′ are also universally quantified.
• [AS-Eval-L]: In this case,

S = DS [s]
s −→ s′

E ⊢×
alg DS [s′] <: T

By induction,

∀S′ ∈ Dyn(DS [s′]). ∀T ′ ∈ Dyn(T ). E 6⊢ S′ <: T ′

By the contrapositive of Corollary 12 (Preservation of subtyping under evaluation), we may conclude

∀S′ ∈ Dyn(S). ∀T ′ ∈ Dyn(T ). E 6⊢ S′ <: T ′

• [AS-Eval-R]: This is similar to the previous case.

�

E.2 Well-typedness of Cast Insertion

Finally, we show that cast insertion produces only well-typed programs. Thus, the only way for a compiled
program to fail is to encounter a failed cast.

Restatement of Theorem 5 (Soundness of Hybrid Type Checking)

1. If E ⊢ s →֒ t : T and ⊢ E then E ⊢ t : T .

2. If E ⊢ s →֒ t ↓ T and ⊢ E then E ⊢ t : T .
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Proof: This proof follows by simultaneous induction on structure of the derivation of both E ⊢ s →֒ t : T
and E ⊢ s →֒ t ↓ T . We proceed by case analysis of the last rule of derivation.

• [C-Var]: The last step in the derivation uses the following rule:

(x : T ) ∈ E or (x : T = t) ∈ E

E ⊢ x →֒ x : {y :T | y = x}
Therefore, one of the following holds:

(x : T ) ∈ E
(x : T = t) ∈ E

It then follows that E ⊢ x : T by rule [C-Var].
• [C-Const]: The last step in the derivation uses the following rule:

E ⊢ c →֒ c : ty(c)

By [T-Const], E ⊢ c : ty(c).
• [C-Fun]: The last step in the derivation uses the following rule:

E ⊢ S →֒ S′ ↓ * E, x : S′ ⊢ t →֒ t′ : T

E ⊢ (λx :S. t) →֒ (λx :S′. t′) : (x :S′ → T )

In order to show (via rule [T-Fun]) that E ⊢ (λx : S′.t′) : (x : S′ → T ), we must show that

E ⊢ S′ : *
E, x : S′ ⊢ t′ : T

These follow from the hypotheses of [C-Fun] and the induction hypothesis. Therefore, E ⊢ (λx : S′.t′) :
(x : S′ → T ).

• [C-Arrow]: The last step in the derivation uses the following rule:

E ⊢ S →֒ S′ ↓ * E, x : S′ ⊢ T →֒ T ′ ↓ *

E ⊢ (x :S → T ) →֒ (x :S′ → T ′) : *

The proof follows as in the previous case.
• [C-App1]: The last step in the derivation uses the following rule:

E ⊢ t1 →֒ t′1 : U unrefine(U) = x :S → T
E ⊢ t2 →֒ t′2 ↓ S

E ⊢ t1 t2 →֒ t′1 t′2 : T ′

In order to show (via rule [T-App]) that E ⊢ t′1 t′2 : T [x := t′2], we must show that

E ⊢ t′1 : (x : S → T )
E ⊢ t′2 : S

By induction, it follows that E ⊢ t′1 : U . We may then use Lemma 14 to conclude that E ⊢
U <: unrefine(U). Using this fact, rule [T-Sub] concludes that E ⊢ t′1 : (x : S → T ). By the
induction hypothesis, we know that E ⊢ t′2 : S. Thus, we may apply rule [T-App] to conclude that
E ⊢ t′1 t′2 : T [x := t′2] holds.

• [C-App2]: The last step in the derivation uses the following rule:

E ⊢ t1 →֒ t′1 ↓ (Dynamic → Dynamic)
E ⊢ t2 →֒ t′2 ↓ Dynamic

E ⊢ t1 t2 →֒ t′1 t′2 : Dynamic

In order to show (via rule [T-App]) that E ⊢ t′1 t′2 : Dynamic holds, we must show that

E ⊢ t′1 : (Dynamic → Dynamic)
E ⊢ t′2 : Dynamic

The two premises of rule [C-App2], and the induction hypothesis, are sufficient to conclude that these two
statements hold.

• [C-Let]: The last step in the derivation uses the following rule:

E ⊢ S →֒ S′ ↓ * E ⊢ v →֒ v′ ↓ S′

E, (x : S′ = v′) ⊢ t →֒ t′ : T T ′ = T [x := v′]

E ⊢ let x = v : S in t →֒ let x = v′ : S′ in t′ : T ′

In order to show (via rule [T-Let]) that E ⊢ let x = v′ : S′ in t′ : T [x := v′] holds, we must show that

E ⊢ v′ : S′

E, (x : S′ = v′) ⊢ t′ : T
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These follow from the premises of rule [C-Let] and the inductive hypothesis.
• [CC-Ok]: The last step in the derivation uses the following rule:

E ⊢ t →֒ t′ : S E ⊢
√

alg S <: T

E ⊢ t →֒ t′ ↓ T

In order to show (via rule [T-Sub]) that E ⊢ t′ : T holds, we must show that both

E ⊢ t′ : S
E ⊢ S <: T

The first premise of rule [CC-Ok] and the inductive hypothesis imply E ⊢ t′ : S. By Lemma 1 and the

assumption that E ⊢
√

alg S <: T imply that E ⊢ S <: T . Hence we may conclude that E ⊢ t′ : T by the
rule [T-Sub].

• [CC-Chk]: The last step in the derivation uses the following rule:

E ⊢ t →֒ t′ : S E ⊢?
alg S <: T

E ⊢ t →֒ (〈T 〉 t′) ↓ T

In order to show (via rule [T-Sub]) that E ⊢ (〈T 〉 t′) : T holds, we must show that for some U ¡

E ⊢ 〈T 〉 : x : U → T
E ⊢ t′ : U

In this case, U , the domain of the cast function 〈T 〉, is Dynamic.
The first premise of rule [CC-Chk] and the inductive hypothesis imply that E ⊢ t′ : S. In

addition, rule [S-Dyn] implies that E ⊢ S <: Dynamic. We may then use rule [T-Sub] to conclude that
E ⊢ t′ : Dynamic. The type of the cast function 〈T 〉, also known as cast T , is Dynamic → T . Using
rule [T-App], we can then conclude that E ⊢ (〈T 〉 t′) : T .

�

29 2007/5/25


