
Compositional and Decidable Checking
for Dependent Contract Types

Kenneth Knowles Cormac Flanagan
University of California at Santa Cruz
{kknowles,cormac}@cs.ucsc.edu

Abstract
Simple type systems perform compositional reasoning in that the
type of a term depends only on the types of its subterms, and not on
their semantics. Contracts offer more expressive abstractions, but
static contract checking systems typically violate those abstractions
and base their reasoning directly upon the semantics of terms.
Pragmatically, this noncompositionality makes the decidability of
static checking unpredictable.

We first show how compositional reasoning may be restored
using standard type-theoretic techniques, namely existential types
and subtyping. Despite its compositional nature, our type system
is exact, in that the type of a term can completely capture its se-
mantics, hence demonstrating that precision and compositionality
are compatible. We then address predictability of static checking
for contract types by giving a type-checking algorithm for an im-
portant class of programs with contract predicates drawn from a
decidable theory. Our algorithm relies crucially on the fact that the
type of a term depends only the types of its subterms (which fall
into the decidable theory) and not their semantics (which will not,
in general).

Categories and Subject Descriptors F.3.1 [LOGICS AND MEAN-
INGS OF PROGRAMS]: Specifying and Verifying and Reasoning
about Programs—Specification techniques

General Terms Languages, Algorithms, Verification.

Keywords Dependent types, refinement types, abstraction, com-
positional reasoning

1. Compositional Reasoning for Contract Types
The construction, analysis, and verification of large programs relies
on compositional reasoning. During program development, com-
positional reasoning separates a program into cognitively manage-
able pieces. During analysis and verification, compositional rea-
soning limits the amount of information that must be stored and
processed.

Traditional type systems provide effective lightweight verifica-
tion in part because they reason compositionally. That is, in a well-
typed program such as

let x : T = e1 in e2

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLPV’09, January 20, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-330-3/09/01. . . $5.00.

the type T provides an abstract specification of e1 that is concise
and yet sufficiently precise to verify that e1 and e2 interact properly,
in that the combined program does not go wrong. This verification
process is compositional in that the verification of e2 cannot rely
on any properties of e1 other than those exposed via its type T .
Consequently, replacing e1 with any equivalently-typed term does
not affect the typeability of the overall program.

Contract Types The goal of this paper is to extend the benefits
of compositional reasoning to contract types. Contract types are
refinements types of the form {x : B | e}, where the contract
predicate e may be an arbitrary computable boolean expression
over the variable x of type B.

Contract types1 provide a natural means for expressing a wide
variety of specifications, such as the type Pos of positive integers
{x : Int |x > 0}. Indeed, the type of a term can abstract its
behavior to a greater or lesser degree (or, in the extreme, may not
abstract its behavior at all). For example, the constant 1 has an
infinite number of types, including Int, Pos and the exact type
{y : Int | y = 1}, and these types are related via subtyping in the
expected manner:

{y :Int | y = 1} <: Pos <: Int

Contract types co-operate in a clean and expressive manner with
dependent function types. We denote dependent function types us-
ing the syntax x : S → T , where argument variable x may occur
free in the range type T .2 This combination of type constructs sup-
ports a wide variety of function specifications, ranging from tradi-
tional simple types to more precise types or even to exact types. For
example, the function add1 has many types, ranging from a simple
type to an exact type, with an intermediate specification describing
only that add1 is increasing. Again, subtyping appropriately relates
these various specifications for add1:

x :Int→ {y :Int | y = x+ 1}
<: x :Int→ {y :Int | y > x}
<: Int→ Int

Non-Compositional Dependent Types Contract types are in-
spired by much prior work on fully-dependent type systems, in-
cluding Cayenne [Augustsson 1998], Epigram [McBride and McK-
inna 2004], Agda [Norell 2007] and Coq [The Coq development team
2004]. Such systems can express very precise specification, includ-
ing full functional correctness in some cases. But considering the
benefits of compositional reasoning, it is unfortunate that depen-

1 Contract types are also known as subset types [Rushby et al. 1998],
refinement types [Denney 1998; Ou et al. 2004; Flanagan 2006], or Σ-
types [The Coq development team 2004]. Following Xu et al. [2007], we
use the term contract types to reflect their close relationship to dynamically-
checked contracts [Findler and Felleisen 2002].
2 x :S → T is equivalent to the more traditional syntax Πx:S. T .

dent type systems are based, in part, on non-compositional reason-
ing. That is, in a dependently typed program C[e], the type system
can reason about e’s interaction with its context C using both:

• compositional reasoning based on the type of e; and
• non-compositional reasoning based on the behavior of e.

This non-compositional nature of dependent type systems orig-
inates from the following standard type rule for dependent function
application. (For simplicity, we assume an empty typing environ-
ment).

` f : (x :S → T) ` e : S

` f(e) : [x 7→e]T

The inferred type [x 7→e]T (denoting T with x replaced by e) of
f(e) includes the term e itself, and not just its type S.

To highlight the non-compositional nature of this rule, suppose
that e is an arbitrary term of type Pos, and that f is the exactly-
typed identity function on integers:

e : Pos
f : (x :Int→ {y :Int | y = x})

Using compositional reasoning, we should only be able to infer that
f returns its argument, which is a Pos, and so f(e) has type Pos.

Under the above type rule, however, the application f(e) has
the more precise type (indeed, exact) type stating that f(e) returns
exactly the value of e.

f(e) : {y :Int | y = e}
Thus, the abstraction Pos of e has now been circumvented!

This non-compositional reasoning causes multiple difficulties.
First, we now have an arbitrary program term (e) that has leaked
into a contract predicate. Since e could be a large term, the type
system now needs to deal with extremely large types, that may be
much larger than any of the types present in the source program.
Since the types in source programs are abstract specifications care-
fully chosen by the programmer, it is not clear that these new, larger
types generated during type checking are at all the right abstrac-
tions for performing lightweight verification.

Second, even if the contract predicates in source programs are
carefully chosen from a decidable theory, the fact that program
terms leak into contract predicates during type checking means that
static type checking still requires deciding implications between
arbitrary program terms, which is of course undecidable.

Compositional Dependent Contract Types Given the beautiful
and precise abstractions provided by dependent and contract types,
and the benefits of compositional reasoning, this paper explores an
alternative strategy for static checking of dependent contract types.
Our guiding principle is:

Compositional reasoning: Only use the abstractions pro-
vided by types when verifying that a term interacts correctly
with its context.

The key idea underlying our approach is illustrated by the following
rule for function application:

f : (x :S → T) e : S′ S′ <: S

f(e) : (∃x :S′. T)

The application f(e) must return a value of type T , where x is
bound appropriately, but what is the appropriate binding for x?

Compositionality dictates that all we are permitted to know
about e (and hence about x) is that it has type S′. Thus, the inferred
type of the application f(e) is the existential type

∃x :S′. T

Roughly speaking, this type denotes the union of all types of the
form [x 7→e′]T , where e′ ranges over terms of type S′. (Existential

types are closely related to dependent pairs Σx :S.T , as discussed
in Section 6 below.)

For the application f(e) considered earlier, this rule infers the
existential type

f(e) : (∃x : Pos. {y :Int | y = x})
that is (informally) equivalent to the type Pos, and indeed is a sub-
type of Pos. Thus, the type rule achieves the desired goal of compo-
sitional reasoning: f(e) has type Pos simply because the argument
expression has type Pos. Furthermore, note that the expression e
itself no longer leaks into the above contract type, which provides
benefits in terms of smaller inferred types and facilitates decidable
type checking.

This paper develops these ideas in the context of an idealized
λ-calculus with contract types, existential types, and various kinds
of primitive data types with pattern matching. As shown above,
existential types are used pervasively to maintain compositionality,
and inferred types often include an outer existential “wrapper”
(like ∃x : Pos. · · ·). Where necessary, our system uses subtyping
to relate existential and non-existential types, and to “hide” the
existential wrappers, all without the need for explicit coercions. For
example, as mentioned above, we have that:

(∃x : Pos. {y :Int | y = x}) <: Pos

Expressiveness and Exactness Given that our type system is
strictly limited to compositional reasoning, and cannot, for exam-
ple, include the traditional rule for dependent function application,
a key question that arises is:

To what degree does the requirement for compositional rea-
soning limit the expressiveness of the type system?

Certainly, the contract type language itself is sufficiently expressive
to describe exact types, such as the type

{x :Int |x = 1}
for the constant 1. More interestingly, we show that, if every con-
stant in the language is assigned an exact type, then for any well-
typed program e, our type system will infer an exact type that ex-
actly captures the run-time semantics of e. This result holds even if
e itself includes coarse type specifications such as Int.

Assigning exact types to primitives is straightforward, via self-
ification. For example, the fixpoint primitive fixT is typically
given the inexact type (T → T) → T . For the case where
T = x :T ′ → B, an exact type for fixT is:

f : (T → T)→ x :T ′ → {y :B | y = fixT f x}
In practice, of course, primitives are typically assigned some-

what coarser types. Nevertheless, this completeness result indicates
that the precision of the type system is entirely parameterized by the
types of these primitives; the type system itself neither requires nor
performs any additional abstraction.

Put differently, the precision of any compositional analysis is
naturally driven by the precision of the abstractions that it com-
poses, and careful choice of abstractions is crucial for achieving
precise, scalable analyses. Our type system is entirely configurable
in this regard; it does not perform any abstraction itself, and in-
stead simply propagates the abstractions inherent in the types of
constants and recursive functions, with the result that the precision
of the analysis is largely under the control of the programmer.

Decidable Type Checking A key benefit of compositional type
checking is that program terms never leak into contract predicates,
and so the language of contract predicates can be cleanly sepa-
rated from that of program terms. In particular, if contract predi-
cates in source programs are drawn from the decidable theory of
linear inequalities, then all proof obligations generated during type
checking also fall within a decidable theory, and so type checking

Figure 1: Syntax

e ::= Expressions:
x variable
c constructor
f primitive function
λx :T. e abstraction
e e application
case e of c x̄ . e else e case

v ::= Values:
c v̄ constructor application
f primitive function
λx :T. e abstraction

T ::= Types:
{x :B | e} refinement type
x :T → T dependent function type
∃x :T. T existential type

B ::= Base types:
Int base type of integers
Bool base type of booleans
IntList base type of lists of integers

Γ ::= Typing Environments:
∅ empty environment
Γ, x : T environment extension

is decidable. We use this result to develop a decidable type check-
ing algorithm for an important and easily-identifiable subset of our
target language. This development carefully exploits that inferred
types, which may contain existential bindings, only occur on the
left-hand-side in subtype checks, and so fortunately we never need
to “guess” a witness for these existential types.

Outline In summary, the key contributions of this paper are:

• clarifying the non-compositionality of dependent type systems
and its consequences for dependent contract types (Section 1)
• developing a compositional dependent type system for depen-

dent contract types (Section 2)
• demonstrating through the exactness of this type system that

precision and compositionality are both achievable (Section 3)
• providing a type checking algorithm for the important special

case of programs whose contract predicates fall in a decidable
theory (Section 4)

Section 6 discusses work with related goals and surveys other
applications of similar type-theoretic techniques. Section 7 then
concludes with suggestions for future work.

2. The System λ∃

We present our ideas in terms of the language λ∃, which extends
the simply-typed λ-calculus with primitive functions, constructors,
pattern matching, base types refined by boolean contracts, depen-
dent function types, and existential types. The syntax of λ∃ is pre-
sented in Figure 1, and its small-step operational semantics in Fig-
ure 2. Redex evaluation → is closed under arbitrary contexts (in
expression or types) to yield the reduction relation . We write
 ∗ and and!∗ for the reflexive-transitive and equivalence clo-
sures of , respectively.

Figure 2: Operational Semantics

Evaluation e1 → e2

(λx :T. e1) e2 → [x 7→e2] e1 [E-β]
f e → δ(f, e) [E-PRIM]

case c ē of c′ x̄ . e1 else e2 → e2 (c 6= c′) [E-FAIL]
case c ē of c x̄ . e1 else e2 → [x̄ 7→ ē] e1 [E-MATCH]

Contextual Evaluation s t

C[e] C[e′] [E-COMPAT]
whenever e → e′

Contexts C

C ::= • | C e | e C | λx :S. C | λx :D. e
| case C of c x̄ . e else e
| case e of c x̄ . C else e
| case e of c x̄ . e else C

D ::= x :D → T | x :T → D | {x :B | C}
| ∃x :D. T | ∃x :T.D

Primitive functions f are presumed to include basic operations
of the language, such as boolean and arithmetic operations, in
particular addition “+”, conjunction “∧” the length function for
lists, and a fixpoint operators fixT for each type T . The rule
[E-PRIM] evaluates a primitive application (f e) according to pre-
defined δ-reduction rules. For example,

δ(not, true) = false

δ(∧, false) = λx :Bool. false

δ(∧, true) = λx :Bool. x

δ(fixT , e) = e (fixT e).

We define the infinite loop

ΩT = fixT (λx :T. x)

for each type T . We sometimes omit type subscripts when they can
be inferred from the context.

Data constructors, denoted by c, include the integer and boolean
constants of the language and list constructors nil and cons. The
semantics of the pattern matching construct

case e1 of c x̄ . e2 else e3

are given by [E-MATCH] and [E-FAIL]. If the value produced by
e1 matches the pattern c x̄ (the constructor c applied in a curried
fashion to the sequence of variables x̄), then e2 is evaluated with
appropriate bindings for x̄; otherwise e3 is evaluated. Full pattern
matching may be encoded as nested case expressions.

The λ∃ type language includes dependent function types,
x :T1 → T2, where T1 is the domain type and the x may occur
in the range type T2. We omit x if it does not occur free in T2. The
language also includes existential types of the form ∃x : T1. T2,
which classify terms of type T2 where x represents some unknown
term of type T1.

In the contract type {x : B | e}, the contract e is a predicate
(a term of type Bool) over the variable x of type B. For exam-
ple, {x :Int |x ≥ 0} represents positive integers, and we abbrevi-
ate {x :B | true} to simply B. Since λ∃ lacks polymorphism, in
addition to Bool and Int we also assume a base type of lists of inte-

gers IntList to develop our examples; adding other monomorphic
data types is straightforward.

2.1 The λ∃ Type System
The λ∃ type system is summarized in Figure 3. The core typing
judgement Γ ` e : T assigns type T to expression e in typing en-
vironment Γ. It is complemented by a well-formedness judgement
for types, Γ ` T . As is customary, we apply implicit α-renaming
to assure that variables are bound at most once in Γ.

Rules [T-CONST] and [T-PRIM] assign built-in types to con-
structors c and primitive functions f according to ty. Variables are
assigned self types by rule [T-VAR], a key feature that we discuss
in Section 2.3. Rule [T-FUN], the standard rule for λ-abstractions,
assigns to λx : T1. e the dependent function type x : T1 → T2,
where the body e has type T2.

Rule [T-APP] for typing a function application (e1 e2) is inter-
esting, since it appears not to support dependent function types at
all. We discuss this in detail in Section 2.2 below.

Rule [T-CASE] for case e of c x̄ . e1 else e2 is rather com-
plex, because it uses only the information contained in the type of
c to provide a measure of path-sensitivity while type-checking e1.
The rule first checks that the inspected term e has the appropriate
type to be constructed by c. Since e may have an existential type,
the rule checks that the type of e is a refinement of the same base
type B as the return type of c, possibly with existentially quanti-
fied variables z̄ : T̄z . Then, under the assumption that the pattern
matching succeeds, bound variables x̄ are added to the typing en-
vironment with their declared types T̄x, according to the type of c.
Finally, the contract predicate e′ from the type of e, and the pred-
icate ec from the return type of c are conjoined into the contract
type ∃z̄ : T̄z. {y :B | ec ∧ e′} and a fresh variable y with this type is
added to the environment. Though y does not occur in e1, x̄ and z̄
may occur in ec and e′, respectively, and the new binding captures
known relationships between these variables. In this way, the pre-
cision of [T-CASE] is determined by the types of constructors. For
example, cons can be assigned a range of types, including:
cons : Int→ IntList→ IntList
cons : Int→ x :IntList→

{y :IntList | length(y) = length(x) + 1}
cons : n :Int→ x :IntList→

{y :IntList | y = cons n x}
In particular, if the constructor c has the precise return type
{y :B | y = c x̄}, then the new binding implies [y 7→c x̄] e′. How-
ever, if c has a more coarse type, then the naı̈ve approach of adding
an assumption such as e = c x̄ is reasoning noncompositionally
using the exact semantics of c, ignoring its type.

Subtyping between well-formed types T1 and T2 is defined by
the judgement

Γ ` T1 <: T2

shown in Figure 4. Rule [S-ARROW] is the expected rule for sub-
typing between function types, with the addition that the param-
eter x is bound in the environment when determining subtyping
between the return types.

Rule [S-BASE] for subtyping between base types invokes a the-
orem proving oracle for implication between contracts, represented
by the judgement Γ ` e1 ⇒ e2. For reasons of space and mod-
ularity, we leave the theorem prover abstract and axiomatize our
requirements upon any prover in Section 3.1.

Subtyping between existential types is derived from the logical
interpretation of subtyping as “implication” between propositions
Our rule to introduce an existential on the left corresponds to the
tautology of first-order logic (∀x ∈ A.P (x) ⇒ Q) ⇒ (∃x ∈
A.P (x)) ⇒ Q where x /∈ fv(C). To introduce an existential
on the right, [S-WITNESS] requires a witness e of type T1 for the

Figure 3: Type Rules

Typing Γ ` e : T

Γ ` c : ty(c) [T-CONST]

Γ ` f : ty(f) [T-PRIM]

(x : T) ∈ Γ

Γ ` x : self(T, x) [T-VAR]

Γ ` T1 Γ, x :T1 ` e : T2

Γ ` (λx :T1. e) : (x :T1 → T2) [T-FUN]

Γ ` e2 : T1 Γ ` e1 : T1 → T2

Γ ` e1 e2 : T2 [T-APP]

z̄, y 6∈ fv(e1)
ty(c) = x̄ : T̄x → {y :B | ec}
Γ ` e : ∃z̄ : T̄z. {y :B | e′}

Γ, x̄ : T̄x, y : ∃z̄ : T̄z. {y :B | ec ∧ e′} ` e1 : T
Γ ` e2 : T

Γ ` case e of c x̄ . e1 else e2 : T [T-CASE]

Γ ` e : T1 Γ ` T1 <: T2 Γ ` T2

Γ ` e : T2 [T-SUB]

Well-formed Types Γ ` T

Γ ` T1 Γ, x :T1 ` T2

Γ ` x :T1 → T2 [WT-ARROW]

Γ, x :B ` e : Bool

Γ ` {x :B | e} [WT-BASE]

Γ ` T1 Γ, x :T1 ` T2

Γ ` ∃x :T1. T2 [WT-EXISTS]

self({x :B | e′}, e) = {x :B | e′ ∧ (x =B e)}
self(x :T1 → T2, e) = x :T1 → self(T2, e x)
self(∃x :T1. T2, e) = ∃x :T1. self(T2, e)

x̄ = x1, · · · , xn

T̄ = T1, · · · , Tn

x̄ : T̄ → T ′ = x1 :T1 → · · ·xn :Tn → T ′

∃x̄ : T̄ . T ′ = ∃x1 :T1. · · · ∃xn :Tn. T
′

variable x. If T is a subtype of [x 7→e]T2, then we can disregard the
identity of the witness and retain only its specification to conclude
that T is a subtype of ∃x :T1. T2.

Corresponding to our intuition, a combination of [S-WITNESS]
and [S-BIND] shows that the following reassuringly covariant rule

Figure 4: Subtyping

Subtyping Γ ` T1 <: T2

Γ ` T3 <: T1 Γ, x :T3 ` T2 <: T4

Γ ` (x :T1 → T2) <: (x :T3 → T4) [S-ARROW]

Γ, x : B ` e1 ⇒ e2

Γ ` {x :B | e1} <: {x :B | e2} [S-BASE]

Γ ` e : T1 Γ ` T <: [x 7→e]T2

Γ ` T <: ∃x :T1. T2 [S-WITNESS]

Γ, x :T1 ` T2 <: T x 6∈ FV (T)

Γ ` ∃x : T1. T2 <: T [S-BIND]

is admissible:
Γ ` T1 <: T3 Γ, x :T1 ` T2 <: T4

Γ ` ∃x :T1. T2 <: ∃x :T3. T4

2.2 Non-dependent Function Application
As mentioned above, the typing rule for a function application
(e1 e2) is extremely simple, and does not refer to dependent types
at all. Instead, the combination of existential types and subtyping
provides enough power in other areas of the type system that
this straightforward rule is sufficiently expressive. In more detail,
suppose e1 has a dependent function type x : T1 → T2 and the
argument e2 has type T ′1 where T ′1 <: T1. Then, we use subtyping
to specialize the function type as follows:

(x :T1 → T2) <: (x :T ′1 → T2)

<: (x :T ′1 → ∃x :T ′1. T2)

≡ (T ′1 → ∃x :T ′1. T2) since x /∈ fv(T ′1)

The new function type T ′1 → ∃x : T ′1. T2 is only applicable to
terms of type T ′1. More interestingly, its existential return type
now internalizes the assumption that x will be of type T ′1, so we
have a non-dependent function type that precisely characterizes the
behavior of the function e1 on arguments of type T ′1, and which
does not refer to the exact semantics of the argument e2.3

Based on the above discussion, the following rule (mentioned
in the introduction) is admissible:

Γ ` e1 : x :T1 → T2 Γ ` e2 : T ′1 Γ ` T ′1 <: T1

Γ ` e1 e2 : (∃x :T ′1. T2)

2.3 Self Types
To motivate our non-standard rule for variable references, consider
the expression x−x, where x has type Int. We wish to assign this
expression the exact type {z :Int | z = 0}, based on the following
exact type for subtraction:

− : (w :Int→ y :Int→ {z :Int | z = w − y})

3 Non-dependent type rules for function application in a dependent type
system are also used by Harper and Lillibridge [1994] and Dreyer et al.
[2003] in ML module systems where computational effects make the stan-
dard substitution-based rule unsound. In the latter, a specialization of the
technique we present allows the power of dependent function application
when the argument is effect-free.

Under the standard rule, whereby a reference to x simply has type
Int, the type of x− x is given by the judgement

x :Int ` (x− x) : (∃w :Int. ∃y :Int. {z :Int | z = w − y})
which is much too coarse. The type system has lost a key notion of
identity, that the two variable references in x− x refer to the same
variable.

To solve this problem, selfification is used to assign to the
variable reference x the exact self type {y : Int | y = x}, which
captures the identity of x, and allows us to derive:

x :Int ` (x− x) : ∃w :{w :Int |w = x}.
∃y :{y :Int | y = x}.
{z :Int | z = w − y}

which assigns to x−x a subtype of {z :Int | z = 0}, as desired. In
addition to this example, self types are also crucial for achieving
path-sensitivity in pattern matching, which requires a notion of
identity for the matched expression.

Selfification (or singleton types/kinds) is a powerful technique
but interacts in delicate ways with our goal of compositional rea-
soning. For example, Ou et al. [2004], in their declarative system,
give a general selfification rule

[T-SELF]
Γ ` e : T

Γ ` e : self(T, e)

But this rule is non-compositional as we cannot replace the sub-
derivation Γ ` e : T with another Γ ` e′ : T . In their al-
gorithmic presentation, they give self types only to constants and
variables. A key point not highlighted, however, is that giving self
types to variables is compositional: Since there are no subderiva-
tions, compositionality is vacuous. This insight is instrumental to
reconciling compositional reasoning with the precision of selfifica-
tion. The restriction of selfification to variables enables us to prove
the following key compositionality theorem for our system:
THEOREM 1 (COMPOSITIONALITY). Suppose Γ ` C[e] : T
based on a subderivation Γ′ ` e : T ′ that corresponds to the
hole in C, and suppose that Γ′ ` e′ : T ′ for some e′. Then
Γ ` C[e′] : T .

Proof sketch: By induction on the derivation of Γ ` C[e] : T .�

3. Exactness
The requirement for compositional reasoning restricts the kinds of
type rules our system can include. For example, we have seen that
it forbids both the standard rule for dependent function application
and the selfification of arbitrary terms. The type system described
above carefully circumvents these restrictions to achieve composi-
tional reasoning. We now address the important question of how
much precision or expressive power our type system has lost be-
cause of its restriction to compositional type rules.

We show that, in fact, our type system is exact: it can assign to
each program term a type that completely captures the semantics
of that term. This property does require that each constant k (that
is, primitive functions f and constructors c) has an exact type that
completely captures its semantics, that is, ty(k) <: self(ty(k), k).
For the duration of this section, we assume that ty has this property.

Exactness also requires that case expressions are “consistent”
in a way that can be expected in a full language – the failure
branch of each case expression is another case expression on
the same expression, or Ω, and all the branches are disjoint. This
condition ensures that sufficient path information is recorded in
the environment. Under these assumptions, the exact information
provided by types of constants and the self types of variables is
propagated losslessly by our type system.

THEOREM 2 (EXACTNESS). If constants have exact types and
pattern matching is consistent, then Γ ` e : T implies Γ ` e :
self(T, e).

Proof sketch. By induction on the typing derivation, using
Lemma 1 from Section 3.1. �

Theorem 2 seems very strong: for an arbitrary term e of type
T (where e’s subterms may include coarse types), we can assign e
the type self(T, e) that exactly captures the semantics of e, all via
compositional reasoning. In exploring the conflict upon which this
paper is premised, we have developed a compositional type system
as powerful as one based on substitution, but without the violation
of abstraction. Rather, our type system insists that whatever preci-
sion is desired must be explicitly expressed via types.

As an illustration of Theorem 2, consider the type of the fix-
point primitive fixT , which is typically given the inexact type
(T → T) → T . We can make this type exact via selfification.
For example, if T = x : T ′ → B, then an exact type for fixT is
self((T → T)→ T, fixT) =

f : (T → T)→ x :T ′ → {y :B | y = fixT f x}
For a more interesting example, consider Euclid’s algorithm for

computing greatest common divisors, where we use if expressions
to abbreviate pattern matching:

gcd = fixT (λg :T. λa :Int. λb :Int. e)
T = Int→ Int→ Int
e = if b = 0 then a

else if a > b then g (a− b) b
else g a (b− a)

If fixT has the exact type self((T → T) → T, fixT), then the
type systems infers the following exact type for gcd:

∃h : (g :T → a :Int→ b :Int→ {r :Int | r = e}).
a :Int→ b :Int→ {r :Int | r = fixT h a b}

Note that this type includes within contract predicates both fixpoint
computations and also the body e of gcd. Thus, the type system
is essentially translating the entire computation into the predicate
language.

While this translation ability illustrates the expressiveness of
our type system, reasoning about fixpoint computations is notori-
ously difficult for automated theorem provers.

In a more typical setting where constants are assigned approx-
imate types, the theorem indicates that the type system neither re-
quires nor performs any abstraction itself; instead, the degree of
abstraction in its reasoning can be entirely configured by choosing
appropriate types for the constants of the language.

A more practical approach is to use the simple type (T →
T) → T for fixT , and for the programmer to provide an
appropriately-precise specification T for the recursive function
gcd. The specification T = Int → Int → Int shown above
is rather coarse; a more precise (but not exact) specification is:

T = a :Int→ b :Int→ {r :Int | a mod r = 0 ∧ b mod r = 0}
The type system can then verify this specification for gcd, with
simple proof obligations such as “if b mod r = 0 and (a −
b) mod r = 0 then a mod r = 0.”

3.1 Type Safety
We now prove type safety for the exact variant of λ∃, which we
will leverage to prove type safety in general. For flexibility, we pa-
rameterize our type system with respect to constructors, primitive
functions, and the theorem proving oracle, making only minimal
assumptions necessary to ensure soundness (most instances will
have many more interesting properties).

ASSUMPTION 1. We require of the implication relation:

1. (Weakening) If Γ1,Γ2 ` e ⇒ e′ then Γ1,Γ
′,Γ2 ` e ⇒ e′

where dom(Γ′) is disjoint from fv(e), fv(e′), dom(Γ1), and
dom(Γ2).

2. (Narrowing) If Γ1, x : T,Γ2 ` e ⇒ e′ and Γ1 ` T ′ <: T
then Γ1, x : T ′,Γ2 ` e⇒ e′

3. (Transitivity) If Γ ` e1 ⇒ e2 and Γ ` e2 ⇒ e3 then
Γ ` e1 ⇒ e3

4. (Reflexivity) Γ ` e⇒ e

5. (Faithfulness) Γ ` e⇒ true

6. (Consistency) Γ 6` true⇒ false

7. (Conjunction 1) Γ ` e1 ∧ e2 ⇒ e1
8. (Conjunction 2) Γ ` e1 ∧ e2 ⇒ e2
9. (Exact Quantification) If x : self(T, e) ∈ Γ then Γ ` p ⇒

[x 7→e]p

10. (Evaluation) If e!∗ e′ then Γ ` e⇒ e′

11. (Substitution) If Γ1, x : T,Γ2 ` e1 ⇒ e2 and Γ1 ` e3 : T
then Γ1, θΓ2 ` θe1 ⇒ θe2 and Γ, x : S, F ` e1 ⇒ θe1 where
θ = [x 7→e3]

ASSUMPTION 2. We require of each primitive function f :

1. f has a well-formed type: ∅ ` ty(f)

2. f cannot get stuck: if ∅ ` f v : T then δ(f, v) is defined.
3. f satisfies preservation: if ∅ ` f e : T and δ(f, e) is defined,

then ∅ ` δ(f, e) : T

Given exactness, an existentially quantified variable with a sin-
gleton type is equivalent to having simply performed a substitution
(it is essentially an explicit substitution [Abadi et al. 1990]). This
intuition is formalized in the following lemma.

LEMMA 1. For any expression e and type T , if Γ ` e : Te and
Γ, x :Te ` T then

1. Γ ` self(Te, e) <: Te

2. Γ ` [x 7→e]T <: ∃x :self(Te, e). T

3. Γ ` ∃x :self(Te, e). T <: [x 7→e]T

Proof Sketch. By induction on the size of T , using Assumption
1 (Exact Quantification). �

The standard substitution lemma follows from Theorem 2 and
Lemma 1.

LEMMA 2 (SUBSTITUTION). Suppose Γ1 ` e1 : T1 and Γ =
Γ1, x :T1,Γ2 and Γ′ = Γ1, θΓ2 where θ = [x 7→e]. Then

1. If Γ ` e : T then Γ′ ` θe : θT

2. If Γ ` T then Γ′ ` θT
3. If Γ ` T <: T ′ then Γ′ ` θT <: θT ′

Proof By mutual induction on the derivations. Since variables are
assigned self types, it is crucial that the substituted term also have
a self type. �

Progress and preservation can now be proved for the exact
variant; the proofs follow the same structure as in Flanagan [2006].

THEOREM 3 (PROGRESS). If ∅ ` e : T then either there exists
some e′ such that e e′, or e is a value.

THEOREM 4 (PRESERVATION). If Γ ` e : T and e e′ then
Γ ` e′ : T

If a term is well-typed in any variant of our system, then it
is certainly well-typed in the exact variant. Hence, a well-typed
term cannot “get stuck” even in those imprecise variants where the
substitution lemma cannot be proved.

Figure 5: Syntax for Algorithmic Typing

l ⊆ e Linear Inequalities

p ::= Predicate Terms
l atomic inequality
p ∧ p conjunction
case w of c x̄ . p else p case

S ::= Restricted Types:
{x :B | p} refinement type
x :S → S restricted function type

A ::= Augmented Types:
{x :B | p} refinement type
x :S → A augmented function type
∃x :A.A augmented existential type

∆ ::= Algorithmic Typing Environments:
∅ empty environment
∆, x : A environment extension

THEOREM 5. For any definition of ty satisfying Assumption 2, if
∅ ` e : T , then e either reduces to a value or is nonterminating.

Proof sketch: Map the derivation of Γ ` e : T into the exact
variant by induction over the derivation, then apply progress and
preservation. �

There may be another syntactic approach to type soundness that
applies in these systems, but it is more conceptually informative to
think of those systems as coarsenings of the exact variant.

4. Algorithmic Typing
We now investigate how to provide decidable compositional type
checking for an interesting subset of λ∃. Type checking for λ∃

is undecidable, despite the recovery of compositional reasoning,
because implication remains undecidable. However, by restricting
contract predicates to a decidable theory, we can now provide a
decidable, compositional, dependent type system. Note that this
decidability result crucially relies on compositional reasoning: in
a traditional dependent type system, even when all annotations fall
within a decidable theory, substitutions made during type checking
may result in proof obligations outside of that theory.

Figure 5 defines the type language for which we provide a type-
checking algorithm. For concreteness, we suppose contracts are
linear inequalities, but the approach is applicable to other decid-
able predicate languages. During type-checking, they will be com-
bined with conjunction and case-splitting on variables, so those are
also included in the predicate sublanguage of terms, denoted by
metavariables p or q.

We distinguish two sublanguages of types. The first, ranged over
by metavariable S, does not include existential quantifiers and may
appear in source programs. Augmented types A generated during
type checking may contain existential quantification, but only in
positive positions. Thus S ⊆ A ⊆ T . Only augmented types A are
bound in the environment during type checking, so we use a new
metavariable ∆ to range over these A-environments.

Our algorithmic type checking judgement ∆ |⇒ e : A is
shown in Figure 6. As usual for syntax directed type checking, we
remove the subsumption rule and instead inline subtyping where
needed. For example, in the case for applications, the existential
quantifiers are introspected to discover the underlying function type

x :S1 → A1, and then the type A2 of the argument is checked for
compatibility with S1.

In typing a pattern matching expression, we lift the case
syntax to types to concisely express the resulting type; intu-
itively, case e of c x̄ . A1 else A2 is equivalent to A1 if
the pattern match succeeds, otherwise is equivalent to A2. Fig-
ure 6 includes the exact definition. To avoid arbitrary expres-
sions appearing in contract predicates, we require that the in-
spected subexpression in a case construct be a variable. This
requirement can be satisfied by rewriting the more general form
(case e of c x̄ . e1 else e2) into the semantically equivalent
((λy :S. case y of c x̄ . e1 else e2) e). This rewriting step in-
troduces a type S for the variable y, and so ensures that any expres-
sion used in pattern matching will have a specification that falls in
the restricted type language S.

Rule [A-VAR-BASE] uses the function refine to selfify vari-
ables. The function refine is like self except it avoids introducing
function applications, which are no longer permitted in our contract
language.

Like typing, algorithmic type checking relies on subtyping, but
interestingly only for the asymmetric form ∆ |⇒ A <: S, which
checks subtyping between an inferred, augmented type A and a
programmer-specified, restricted type S. Since existential types
never appear on the right hand side, we (fortunately!) never need
to “guess” witnesses for existentials. Existentials on the left are
unproblematic, because the existential quantification in a negative
context transforms into a universal quantification in a positive con-
text, which is handled algorithmically. We could add the covariant
rule from the end of section 2.2 to allow some existential quantifi-
cation on the right side of subtyping, but our syntactic conditions
make that unnecessary.

Algorithmic typeability is not closed under evaluation; instead
soundness is provided by mapping algorithmic derivations onto
derivations in the full type system.

THEOREM 6 (SOUNDNESS OF ALGORITHMIC TYPING).
If ∆ |⇒ e : A and pattern matching is consistent, then ∆ ` e : A

Proof sketch: By induction on the derivation of ∆ |⇒ e : A. �
While the algorithm is not complete with respect to the full

type system, it is complete for the class of sublanguages we have
described.

THEOREM 7 (RELATIVE COMPLETENESS).
If ∆ ` e : T and e is annotated with restricted types, and pattern
matching is consistent and inspects only variables, then there exists
an A such that ∆ |⇒ e : A and ∆ ` A <: T

Proof sketch: By induction on the derivation of ∆ ` e : T . �
These algorithmic rules characterize a decidable class of type

systems for the core language: If all program annotations are re-
stricted types whose contracts are expressions in some decidable
theory (where this means that queries of the form ∆ |⇒ q ⇒ p
are decidable, such as linear inequalities with conjunction and case
splits), then all implication queries also fall in this theory, and
are decidable. Interestingly, because existentials only appear as as-
sumptions in proof obligations, the theory need only support a re-
stricted form of existential quantification that is “productive” in that
each existential corresponds to positive existence of some term, and
there is never any existential proof obligation.

5. Binary Search Trees
As an illustration of our decidable type system, we now discuss
a somewhat more involved example of binary search trees. We
assume an additional base type BST to represents binary search

Figure 6: Algorithmic Rules

∆ |⇒ e : A
[A-CONST]

∆ |⇒ c : ty(c)

[A-PRIM]

∆ |⇒ f : ty(f)

[A-VAR-BASE]
(x : A) ∈ ∆

∆ |⇒ x : refine(A, x)

[A-FUN]
∆ |⇒ S ∆, x :S |⇒ e : A

∆ |⇒ (λx :S. e) : (x :S → A)

[A-APP]
∆ |⇒ e1 : ∃z̄ : T̄z. x :S1 → A1 ∆ |⇒ e2 : A2 ∆, z̄ : T̄z |⇒ A2 <: S1

∆ |⇒ e1 e2 : ∃z̄ : T̄z.∃x :A2. A1

[A-CASE]
z̄, y 6∈ fv(e1) ty(c) = x̄ : S̄ → {y :B | pc}

∆ |⇒ w : ∃z̄ : T̄z. {y :B | py} ∆, x̄ : S̄, y :∃z̄ : T̄z. {y :B | pc ∧ py} |⇒ e1 : A1 ∆ |⇒ e2 : A2

∆ |⇒ (case w of c x̄ . e1 else e2) : (case w of c x̄ . A1 else A2)

∆ |⇒ S [AT-ARROW]
∆ |⇒ S1 ∆, x :S1 |⇒ S2

∆ |⇒ x :S1 → S2

[AT-BASE]
∆, x : B |⇒ p : Bool

∆ |⇒ {x :B | p}

∆ |⇒ A <: S

[AS-ARROW]
∆ |⇒ S2 <: S1 ∆, x : S2 |⇒ A1 <: S3

∆ |⇒ (x :S1 → A1) <: (x :S2 → S3)

[AS-BASE]
∆, x : B ` q ⇒ p

∆ |⇒ {x :B | q} <: {x :B | p}

[AS-BIND]
∆, x :A1 |⇒ A2 <: S3

∆ |⇒ ∃x :A1. A2 <: S3

refine({x :B | e′}, e) = {x :B | e′ ∧ (x =B e)}
refine(x :T1 → T2, e) = x :T1 → T2

refine(∃x :T1. T2, e) = ∃x :T1. refine(T2, e)

case w of c x̄ . ∃y :A1. A2 else A3 = ∃y :A1. (case w of c x̄ . A2 else A3)
case w of c x̄ . A1 else ∃y :A2. A3 = ∃y :A2. (case w of c x̄ . A1 else A3)

case w of c x̄ . {y :B | p1} else {y :B | p2} = {y :B | case w of c x̄ . p1 else p2}
case w of c x̄ . y :S1 → A1 else y :S2 → A2 = y : (case w of c x̄ . S1 else S2)→ case w of c x̄ . A1 else A2

trees, with auxiliary functions:
lower : BST→ Int
upper : BST→ Int

that return the lower and upper bounds of integers in a BST, and
return maxIntand minInt, respectively, on empty BSTs. We also
assume some additional constants and primitive functions:

minInt : Int
maxInt : Int

min : x :Int→ y :Int→ {z :Int | z ≤ x ∧ z ≤ y}
max : x :Int→ y :Int→ {z :Int | z ≥ x ∧ z ≥ y}

The type of a binary search tree with integers in the range [lo, hi)
is defined by the contract type:

BSTlo,hi = {x :BST | lo ≤ lower(x) ∧ upper(x) < hi }
Binary search tree are created using the constructors empty and

node, which are assigned the following precise types:

empty : lo :Int→ hi :Int→ BSTlo,hi

node : lo :Int→ hi :Int→
v :{v :Int | lo ≤ v < hi} →
x :BSTlo,v → y :BSTv,hi → BSTlo,hi

Here, these constructors take additional “index” arguments lo and
hi, and so we are using an index-type-like implementation of
binary search trees. Using these constructors, we can define the

insert operation on BSTs:

fixT (λf :T.
λlo :Int. λhi :Int.
λv :{y :Int | lo ≤ y < hi}.
λx :BSTlo,hi.
case x of empty lo hi .

(node lo hi v (empty lo v) (empty v hi)) else
case x of (node lo hi n l r) .

(case v < n of
true . (node lo hi n (insert lo n x l) r)

else case v < n of
false . (node lo hi n l (insert n hi x r))

else Ω)
else Ω)

where insert has type

T = lo :Int→ hi :Int→
v :{v :Int | lo ≤ v < hi} →
BSTlo,hi → BSTlo,hi

All the proof obligations generated for this program are formulae
over linear integer inequalities, and hence decidable.

In this example, the variables lo and hi are somewhat awkward,
and provide an indirect specification of the behavior of insert.
We can express this program more naturally by removing these

parameters instead expressing the key data invariants directly in
terms of the underlying data structure. In this formulation, the BST
constructors have the more natural types:

empty : BSTmaxInt,minInt

node : v :Int→
x :{x :BST | upper(x) < v} →
y :{y :BST | v ≤ lower(y)} →
BSTlower(x),upper(y)

The revised insert implementation is identical to the one shown
above but elides index variables:

fixT ′(λf :T ′. λv :Int. λx :BST.
case x of empty . (node v empty empty) else
case x of (node n l r) .

(case v < n of
true . (node n (insert x l) r)

else case v < n of
false . (node n l (insert x r))

else Ω)
else Ω)

and has the following type T ′:

T ′ = v :Int→ x :BST→
BSTmin(lower(x),v),max(upper(x),v)

6. Related Work
First, we present a high-level comparison of contract types with
indexed types, an alternative approach towards similar goals. We
next survey other applications of existential quantification in type
systems. Finally, we briefly outline the development of refinement
and contract types which this work directly builds upon.

6.1 Indexed Types
One solution, adopted by Dependent ML [Xi and Pfenning 1999],
ATS [Cui et al. 2005], and Ωmega [Sheard 2005], is to distinguish
compile-time from run-time data, and allow types to depend only
on compile-time data. This approach makes compositionality a
vacuous proposition, and indeed can sometimes be encoded in
existing polymorphic type systems without use of dependent types
[Zenger 1997; McBride 2002].

A concrete technique that is common in all of the above systems
is the use of indexed types. An illustrative example is the family of
types IntListn, where n indicates the length of lists inhabiting
the type. The types of list constructors and the append function are
as follows. We use the type N to distinguish the compile-time type
of natural numbers.

nil : IntList0

cons : n :N→ Int→ IntListn → IntListn+1

append : m :N→ n :N→
IntListm → IntListn → IntListm+n

The connection between run-time invariants and compile-time data
is based essentially on injecting an abstraction of run-time data into
compile-time data; for example lists indexed by their length use a
compile-time copy of the natural numbers. The expressions that are
reflected into indices can be carefully controlled to ensure that type
compatibility remains decidable.

We can naturally express the indexed type IntListn as the con-
tract type {x :IntList | length(x) = n}, and the above types and
all proof obligations remain equivalent. In this way, by reifying the
abstraction function from a value to its associated index, arbitrary
indexed types can be embedded into general contract types. The
abstraction function may be treated as an uninterpreted symbol –
its definition cannot be necessary in proof obligation since it is not
even available to indexed types.

The above type for append is somewhat awkward, though, as
it requires the additional index parameters n and m.4 In contrast,
general contract types allow a more natural expression of the same
specification for append, that eliminates these index parameters:
x :IntList→ y :IntList→
{z :IntList | length(z) = length(x) + length(y)}

More critical than the aesthetic issue of index parameters, the
index of a data structure, decided by its implementor, determines
which properties may be reasoned about, inhibiting reuse and com-
position of data structures. For example, if one is interested in ver-
ifying the ordering of a list, rather that its length, then a different
index is required, specifically the minimum element (at the head
of the list) to specify cons, and also the maximum element (at the
tail) to specify append. We also need integers indexed by their ex-
act values Inti, where i is drawn from compile-time integers Z
(with±∞ for corner cases). We define the type IntListi,j of lists
in ascending order with minimum element i and maximum element
j using the following constructors. Note that predicate subtypes are
used on indices of compile-time type Z but not on runtime terms.

nil : IntList∞,−∞
cons : i :Z→ j :{j :Z | j ≥ i} → k :Z→

Inti → IntListj,k → IntListi,max(i,k)

append : i :Z→ j :Z→ k :{k :Z | k ≥ j} → l :Z→
IntListi,j → IntListk,l → IntListmin(i,k),l

In general, since the index of a data type determines the proper-
ties that may be reasoned about, more complex properties require
embedding of more data as indices. In the limit, giving the precise
type x :IntList→ {y :IntList | y = x} to the identity function
on lists (or any type) requires embedding the entire type of lists (or
any type) into the index language, which reduces the utility of the
syntactic distinction of compile-time data.

In contrast general contract types, can naturally express a wide
variety of refinements over the same IntList type, such as {x :
IntList | minElem(x) = i ∧ maxElem(x) = j} or the most nat-
ural {x : IntList | isSorted(x)}. The proof obligations for the
latter may be more problematic, and the current work is progress
towards characterizing those situations where they are not difficult.

6.2 Existential Types
Formal existential quantification in type-theory has found a variety
of uses, including closure conversion Morrisett et al. [1999]; Gross-
man [2002], module systems [Mitchell and Plotkin 1988; Harper
and Lillibridge 1994; Dreyer et al. 2003], and semantics of object
orientation Bruce et al. [1999]. Most similar to the present work are
ML module systems, which also combine it with subtyping and a
different (formal) form of singleton types.

The standard substitution-based typing rule for function ap-
plication is unsound in the presence of effects, so dependencies
have to be “forgotten” [Harper and Lillibridge 1994]. Dreyer et al.
[2003] ameliorate this restriction with a sophisticated effect system
that restores the power of dependent application in the event that
the argument to a function is effect-free.

Also similar is the need to express sharing constraints. Just
as we give self types to variables, Stone and Harper [2000] and
subsequently Dreyer et al. [2003] assign singleton kinds (a spe-
cial syntactic form) to modules in order to preserve information
when applying a dependently-kinded functor. In contrast to module
languages, we examine the consequences and form of existentials
and selfification in the context of dependent contracts with pattern
matching and automatic theorem proving. Our singletons are ex-
pressed in the existing type language rather than adding a special
form, and in our setting a type of a variable x may constrain other

4 Note that these index parameters can be inferred in many cases.

bound variables so we maintain this information while adding the
identity information to the known type of x.

Our different approaches and goals led us to emphasize compo-
sitional reasoning as a key aspect of our system, which we present
in a more minimal calculus than the large and practical ML mod-
ule type systems. Compositionality is obviously important in their
work as well, since it affects separate (re-)compilation.

Our existential types are a limited expression of Σ types for
dependent pairs in powerful type theories such as those underly-
ing Coq [The Coq development team 2004], Hoare Type Theory
[Nanevski et al. 2006], and Epigram [McBride and McKinna 2004].
Dependent ML, in fact, makes use of types such as Σx :T1.T2 with
explicit introduction and elimination forms (i.e. without subtyping)
to allow functions operating over arguments of unknown index.

With respect to Σ types, our work can be interpreted as a way
of providing automation for a simple and common case where the
full power of these type theories is not necessary.

6.3 Refinement and Contract Types
Much of the work we build upon directly is discussed in Sections
1, 2, and 6.1, so we present only a brief survey here. Freeman and
Pfenning introduced datasort refinements, which express restric-
tions on the recursive structure of algebraic datatypes [1991], but
our refinement types are most similar to those of Denney [1998],
Ou et al. [2004] and those from the Hybrid Type Checking (HTC)
work of Flanagan [2006], Gronski et al. [2006], and Knowles and
Flanagan [2007]. As in HTC, type checking for λ∃ is undecidable,
but in HTC, run-time checks are inserted into a program when an
implication condition can be neither proven nor refuted, resulting
in unpredictable coverage and run-time costs. Instead, we give a
predictable type checking algorithm for a clear sublanguage of λ∃.
In some sense, the present work characterizes when runtime checks
(or manual proof) are unnecessary in the mentioned systems.

Another system with a similar language for expressing specifi-
cations, but an entirely different formal approach, is ESC/Haskell
Xu [2006]; Xu et al. [2007]. which uses symbolic evaluation
to prove that a program obeys its (dependent) contract. Since
ESC/Haskell inlines functions and reasons about their body di-
rectly, rather than using their specification, it does not address
issues of compositionality. However, ESC/Haskell gives a much
more thorough treatment to the notion of blame, which is integral
to a complete contract system.

7. Conclusions and Future Work
While dependent types provide a elegant foundation for many
expressive type systems, they are traditionally based on non-
compositional reasoning. We have shown how to restore composi-
tional reasoning for dependent contract types using a combination
of existential types and subtyping.

The precision of any compositional analysis is naturally driven
by the precision of the abstractions that it composes, and care-
ful choice of abstractions is crucial for achieving precise, scalable
analyses. Our type system is entirely configurable in this regard; it
does not perform any abstraction itself, and instead simply propa-
gates the abstractions inherent in the types of constants and recur-
sive functions, with the result that the precision of the analysis is
largely under the control of the programmer. In the extreme, our
type system can infer for each term an exact type that completely
captures the semantics of that term. Exploring this property of the
type system using the denotational semantics of contracts [Blume
and McAllester 2006] may yield more satisfying theorems in the
case that constants have less precise types. More generally, we are
interested in exploring deeper connections between our definition
of compositionality and denotational semantics, such as abstract
interpretation.

Compositionality provides important practical benefits in the
form of predictability in the case of dependent contract types.
For the important special case of programs whose contracts fall
within a decidable theory, our type checking algorithm relies on
compositional reasoning to achieve the key invariant that all proof
obligations generated during type checking also lie within this
theory. The analysis of programs whose specifications do not fall
within a decidable theory remains an important open area not
addressed by our work.

References
M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitution.

In Symposium on Principles of Programming Languages, pages 31–46,
1990.

L. Augustsson. Cayenne — a language with dependent types. In Proceed-
ings of the ACM International Conference on Functional Programming,
pages 239–250, 1998. ISBN 1-58113-024-4.

M. Blume and D. McAllester. Sound and complete models for contracts.
Journal of Functional Programming, 16:375 – 414, July 2006.

K. B. Bruce, L. Cardelli, and B. C. Pierce. Comparing object encodings.
Information and Computation, 155(1/2):108–133, 1999.

S. Cui, K. Donnelly, and H. Xi. ATS: A Language That Combines Program-
ming with Theorem Proving. In Proceedings of the 5th International
Workshop on Frontiers of Combining Systems, pages 310–320, Vienna,
Austria, September 2005.

E. Denney. Refinement types for specification. In Proceedings of the
IFIP International Conference on Programming Concepts and Methods,
volume 125, pages 148–166. Chapman & Hall, 1998. ISBN 0-412-
83760-9.

D. Dreyer, K. Crary, and R. Harper. A type system for higher-order
modules. In Symposium on Principles of Programming Languages,
pages 236 – 249, 2003.

R. B. Findler and M. Felleisen. Contracts for higher-order functions. In Pro-
ceedings of the International Conference on Functional Programming,
pages 48–59, 2002.

C. Flanagan. Hybrid type checking. In Symposium on Principles of
Programming Languages, pages 245 – 256, 2006.

T. Freeman and F. Pfenning. Refinement types for ML. In Conference on
Programming Language Design and Implementation, pages 268–277,
1991.

J. Gronski, K. Knowles, A. Tomb, S. N. Freund, and C. Flanagan. Sage:
Practical hybrid checking for expressive types and specifications. In
Proceedings of the Workshop on Scheme and Functional Programming,
pages 93–104, 2006.

D. Grossman. Existential types for imperative languages. In European
Symposium on Programming, pages 85–120, 2002.

R. Harper and M. Lillibridge. A type theoretic approach to higher-order
modules with sharing. In Proceedings of the ACM Symposium on
Principles of Programming Languages, pages 123–137, 1994.

K. Knowles and C. Flanagan. Type reconstruction for general refinement
types. In European Symposium on Programming, 2007.

The Coq development team. The Coq proof assistant reference manual.
LogiCal Project, 2004. URL http://coq.inria.fr. Version 8.0.

C. McBride. Faking it: Simulating dependent types in haskell. Journal of
Functional Programming, 12(4-5):375–392, 2002.

C. McBride and J. McKinna. The view from the left. Journal of Functional
Programming, 14(1):69–111, 2004.

J. C. Mitchell and G. D. Plotkin. Abstract types have existential type.
Transactions on Programming Languages, 10(3):470 – 502, 1988.

G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to typed
assembly language. ACM Transactions on Programming Languages and
Systems, 21(3):527–568, 1999.

A. Nanevski, G. Morrisett, and L. Birkedal. Polymorphism and separation
in hoare type theory. In International Conference on Functional Pro-
gramming, pages 62–73, 2006.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Department of Computer Science and Engineer-

ing, Chalmers University of Technology, SE-412 96 Göteborg, Sweden,
September 2007.

X. Ou, G. Tan, Y. Mandelbaum, and D. Walker. Dynamic typing with
dependent types. In Proceedings of the IFIP International Conference
on Theoretical Computer Science, pages 437–450, 2004.

J. Rushby, S. Owre, and N. Shankar. Subtypes for specifications: predicate
subtyping in pvs. IEEE Transactions on Software Engineering, 24(9):
709–720, 1998.

T. Sheard. Putting curry-howard to work. In Proceedings of the workshop
on Haskell, pages 74–85, 2005.

C. A. Stone and R. Harper. Deciding type equivalence in a language
with singleton kinds. In Symposium on Principles of Programming
Languages, pages 214 – 227, 2000.

H. Xi and F. Pfenning. Dependent types in practical programming. In
POPL ’99: 26th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 214–227. ACM Press, 1999.

D. N. Xu. Extended static checking for haskell. In Proceedings of the
workshop on Haskell, pages 48 – 59, 2006.

D. N. Xu, S. P. Jones, and K. Claessen. Static contract checking for haskell.
In Draft Proceedings of the International Symposium on Implementation
and Application of Functional Languages, pages 382 – 399, 2007.

C. Zenger. Indexed types. Theoretical Computer Science, 187(1–2):147–
165, 1997.

