
Explicit names without α-equivalence:
Simple type soundness for a CEK semantics.

Kenneth Knowles Cormac Flanagan
University of California at Santa Cruz

kknowles/cormac@cs.ucsc.edu

Motivation Proofs of metatheoretical properties of type
systems using current techniques are notorious for straight-
forward but tedious inductions involving many subcases,
encouraging proof elision. Ironically, as type systems are
used for more complex languages and analyses, their pub-
lished proofs get smaller. Today, we can expect the published
soundness proof of a type system to look something like this:

Proof. Straightforward induction over the derivation.

Proof assistants have the potential to aid programming
language researchers in writing, checking, and even type-
setting correct proofs. But effectively mapping handwrit-
ten proofs to a formal system can be unpredictable. While
very simple proofs may be discharged automatically by proof
search, at a very moderate level of complexity mechanized
proofs can become much harder than their informal coun-
terparts.

The difficulty of mechanizing metatheory proofs for
programming languages lies in the definition of capture-
avoiding substitution, which is expressed in informal proofs
by considering terms equivalent up to renaming of bound
variables. The POPLmark [2] challenge specifically targets
this problem, and illustrates a variety of approaches, but
none has achieved widespread dominance.

Contribution This work contributes another solution to
naming: that of managing substitutions explicitly in a CEK-
style operational semantics [4]. Our development does not
include capture-avoiding substitution, and hence does not
require a notion of α-equivalence, nor a fresh name sup-
ply. Our current result is a very concise and simple proof
in Coq of progress and preservation for the simply-typed
lambda calculus (STLC). In particular, our proof is about
1500 whitespace-delimited tokens1, much shorter than the
nearest comparable proof. Moreover, we use no custom tac-
tics and only two non-trivial lemmas. This suggests that the
overhead of managing explicit substitutions is less than that
of the supporting lemmas and tactics that ease proofs using
other representations.

Other Approaches to Naming We briefly compare rep-
resentative examples of type soundness proofs for STLC
using other approaches to naming, considering complexity,
length, aesthetics, and applicability.

Aydemir proved soundness for STLC using the well-
known Debruijn representation for terms, where each α-

1 328 lines, but lines are easily compressed or expanded in Coq
developments according to style. Coq’s notatation mechanism
makes even token counts suspect, giving only a very approximate
measure of “ease of proof”

equivalence class has a unique representative [1]. The proofs
in Coq constitute about 2600 tokens (667 lines) using three
simple tactics, and over a dozen lemmas about lists and
Debruijn indices. In addition to being about 70% longer than
our solution, the statements of lemmas such as weakening
are polluted with adjustments of Debruijn indices.

Charguéraud provides a soundness proof for STLC us-
ing a locally nameless representation [3]. Bound variables
are represented with Debruijn indices, while explicit names
are used for free variables. There is again a unique repre-
sentative for each α-equivalence class, but now lemmas such
as weakening are stated and proved in a natural way. The
cost is that substitution must be defined both for names
and for bound indices. Charguéraud’s proof is over 2600 to-
kens of Coq (487 lines), using over twenty tactics and tactic
notations for aggresive automation, and a number of lem-
mas about fresh names and relationships between the two
definitions of substitution.

The Twelf wiki [5] presents an extremely concise proof
of soundness for STLC using higher-order abstract syntax
(HOAS). HOAS is a beautiful use of the binding implemen-
tation of the host language to encode binding for the object
language. Unfortunately, HOAS is not supported by Coq or
Isabelle because their logics become unsound in the presence
of general non-strictly positive inductive types, so we do not
consider HOAS a comparable technique.

Ongoing Work We are currently investigating the appli-
cability and utility of our explicit substitutions approach
to type systems with polymorphism and dependent types,
where substitution takes place during type checking.

References
[1] B. Aydemir. Formalization of the meta-theory of a

simply-typed lambda calculus using de bruijn indices.
http://www.cis.upenn.edu/proj/plclub/mmm/

poplmark/baydemir-stlc.tar.gz.

[2] B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C.
Pierce, P. Sewell, D. Vytiniotis, G. Washburn, S. Weirich, and
S. Zdancewic. Mechanized metatheory for the masses: The
poplmark challenge. In Theorem Proving in Higher Order
Logics, pages 50–65, 2005.

[3] A. Charguéraud. Working with coq on the poplmark
challenge. http://www.chargueraud.org/arthur/

research/2006/poplmark/.

[4] M. Felleisen. The Calculi of Lambda-v-CS Conversion:
A Syntactic Theory of Control And State in Imperative
Higher-Order Programming Languages. PhD thesis, Indiana
University, 1987.

[5] Proving metatheorems. http://twelf.plparty.org/wiki/
Proving metatheorems.

1 2007/8/2


