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Abstract

Hybrid Type Checking and Type Reconstruction

for Executable Refinement Types

by

Kenneth L. Knowles

Traditional static type systems are very effective for verifying certain basic interface

specifications. Dynamically checked contracts support more precise specifications, but

these are not checked until run time, resulting in incomplete detection of defects. This

thesis explores a system of executable refinement types that can express the same spec-

ifications as contracts, such as function pre- and postconditions and data structure

invariants. Type checking for executable refinement types involves reasoning about

implications between arbitrary executable predicates, hence is undecidable. We first in-

troduce hybrid type checking, a synthesis of static and dynamic checking that addresses

this undecidability by enforcing executable refinement types via static analysis where

possible, but also via dynamic checks where necessary.

Owing in part to their greater expressiveness, executable refinements are more

verbose than simple types, so type reconstruction is particularly valuable. Yet typeabil-

ity is also undecidable because it subsumes type checking. Using a generalized notion

of type reconstruction, we present the first type reconstruction algorithm for executable

refinement types. Our algorithm is a typeability-preserving transformation and defers

type checking to a subsequent phase, where a strategy such as hybrid type checking



may be employed. The algorithm generates and solves a collection of implication con-

straints over refinement predicates, inferring maximally precise refinement predicates in

a largely syntactic manner that is reminiscent of strongest postcondition calculation.

Perhaps surprisingly, our notion of type reconstruction is decidable even though type

checking is not.
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Chapter 1

Executable Refinement Types

The construction of reliable software is extremely difficult. For large systems,

it requires a modular development strategy that, ideally, is based on precise and trusted

interface specifications. In practice, however, programmers typically work in the context

of a large collection of APIs whose behavior is only informally and imprecisely specified

and understood. Practical mechanisms for specifying and verifying precise, behavioral

aspects of interfaces are clearly needed.

Static type systems have proven to be effective and practical tools for spec-

ifying and verifying basic structural interface specifications, and are widely adopted.

However, there are important specifications that cannot generally be expressed with

only structural types, such as preconditions, postconditions, adherence to protocols, or

potentially arbitrary formal properties of programs.

Many preconditions and postconditions can be expressed as executable con-

tracts [Meyer 1988; Findler and Felleisen 2002; Leavens and Cheon 2005; Gomes et al.
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1996; Holt and Cordy 1988; Luckham 1990; Parnas 1972; Kölling and Rosenberg 1997].

Dynamic checking can easily support some precise specifications1, such as:

- Subranges: The function printDigit requires an integer in the range [0,9].

- Aliasing restrictions: The function swap requires that its arguments are distinct

reference cells.

- Ordering restrictions: The function binarySearch requires that its argument is a

sorted array.

- Size specifications: The function serializeMatrix takes as input a matrix of size

n by m, and returns a one-dimensional array of size n×m.

- Arbitrary executable predicates: an interpreter (or code generator) for a typed

language (or intermediate representation [Tarditi et al. 1996]) might naturally

require that its input be well typed, i.e., that it satisfies the predicate wellTyped :

Expr→ Bool.

In this thesis, we describe a type system with the expressivity of dynamic

contracts and the technical apparatus which makes the type system practical. Such

precise types, however, make type checking undecidable. Rather than compromise on

the design of the type system to maintain decidability, we present practical algorithms

for working within an undecidable type sytem.
1Notably absent are common properties requiring (potentially) infinite quantification, such as asso-

ciativity or injectivity
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Figure 1.1: Syntax

v ::= Values:
c constant
λx :S. t abstraction

s, t ::= Terms:
v value
x variable
t t application

S, T ::= Types:
x :S → T dependent function type
{x :B | t} refined basic type

E ::= Environments:
∅ empty environment
E, x : T environment extension

1.1 The Language λH

This section introduces a variant of the simply typed λ-calculus extended with

executable refinement types. We refer to this language as λH .

The syntax of λH is summarized in Figure 1.1. Terms include variables, con-

stants, functions, and applications. The λH type language includes dependent function

types [Cardelli 1988a], for which we use the syntax x :S → T of Cayenne [Augustsson

1998] (in preference to the equivalent syntax Πx :S. T ). Here, S is the domain type of

the function and the formal parameter x may occur in the range type T . We omit x if

it does not occur free in T , yielding the standard function type syntax S → T .

We use B to range over base types, which includes at least Bool and Int. As

3



in many languages, these base types are fairly coarse and cannot, for example, denote

integer subranges. To overcome this limitation, we introduce executable refinement types

of the form {x :B | t}. Here, the variable x (of base type B) can occur within the boolean

term or predicate t. Informally, this refinement type denotes the set of constants c of

type B that satisfy this predicate, i.e., for which the term [x 7→c] t evaluates to true.

Thus, {x :B | t} denotes a subtype of B, and we use a base type B as an abbreviation

for the trivial refinement type {x :B | true}.

Our refinement types are inspired by prior work on decidable refinement type

systems [Mandelbaum et al. 2003; Freeman and Pfenning 1991; Davies and Pfenning

2000; Xi and Pfenning 1999; Xi 2000; Ou et al. 2004]. However, our refinement predicates

are arbitrary boolean expressions, so every computable subset of the integers is actually

a λH type. Not surprisingly, this expressive power causes type checking to become

undecidable. More specifically, subtyping between two refinement types {x :B | t1} and

{x :B | t2} reduces to checking implication between the corresponding predicates, which

is clearly undecidable. These decidability difficulties are circumvented by our hybrid

type checking algorithm, which we describe in Chapter 2.

The type of each constant is defined by the function ty : Constant → Type in

Figure 1.2. The set Constant is implicitly defined as the domain of the mapping.

A basic constant is a constant whose type is a refinement type (not a func-

tion type). Each basic constant is assigned a singleton type that denotes exactly that

constant. For example, the type of an integer n denotes the singleton set {n}.

A primitive function is a constant of function type. For clarity, we use infix

4



Figure 1.2: Some Types of Constants

true : {b :Bool | b}
false : {b :Bool | not b}

⇔ : b1 :Bool→ b2 :Bool→ {b :Bool | b ⇔ (b1 ⇔ b2)}
not : b :Bool→ {b′ :Bool | b ⇔ not b}

n : {m :Int |m = n}
+ : n :Int→ m :Int→ {z :Int | z = n + m}

+n : m :Int→ {z :Int | z = n + m}
= : n :Int→ m :Int→ {b :Bool | b ⇔ (n = m)}

ifT : Bool→ T → T → T
fixT : (T → T ) → T

syntax for applications of some primitive functions (e.g., +, =, ⇔). The types for

primitive functions are quite precise: The type

+ : n :Int→ m :Int→ {z :Int | z = n + m}

exactly specifies that this function performs addition. That is, the term n + m has the

type {z :Int | z = n + m} denoting the singleton set {n + m}. Note that even though

the type of “+” is defined in terms of “+” itself, this does not cause any problems in

our technical development, since the semantics of + do not depend on its type.

The constant fixT is the fixpoint constructor of type T , and enables the defi-

nition of recursive functions. For example, the factorial function can be defined as:

fixInt→Int

λf : (Int→ Int). λn :Int.
ifInt (n = 0) 1 (n ∗ (f (n− 1)))

Refinement types can express many precise specifications, such as the following

(where we assume that Unit, Array, and RefInt are additional base types, and the

primitive function sorted : Array→ Bool identifies sorted arrays.)

5



Figure 1.3: Evaluation Rules

Redex Evaluation s −→ t

(λx :S. t) s −→ [x 7→s] t [E-β]
c v −→ δ(c, v) [E-Prim]

Contextual Evaluation s t

C[s]  C[t] if s −→ t [E-Compat]

Evaluation Contexts C, D

C ::= • | C t | t C | λx :S. C | λx :D. t
D ::= x :D → T | x :S → D | {x :B | C}

- printDigit : {x :Int | 0 ≤ x ∧ x ≤ 9} → Unit.

- swap : x :RefInt→ {y :RefInt |x 6= y} → Bool.

- binarySearch : {a :Array | sorted a} → Int→ Bool.

1.2 Operational Semantics of λH

We next describe the run-time behavior of λH terms. The relation s −→ t

expresses conversion of redexes; we close this over arbitrary contexts to generate the

single-step evaluation relation s  t. We write  ∗ for the reflexive-transitive closure

of  . As shown in Figure 1.3, the rule [E-β] performs standard β-reduction of function

applications. The rule [E-Prim] evaluates applications of primitive functions according

6



to their external definitions, given by the partial function

δ : Constant × Term ⇀ Term

For example:

δ(not, true) = false

δ(+, 3) = +3

δ(+3, 4) = 7

δ(not, 3) = undefined

δ(ifT , true) = λx :T. λy :T. x

δ(ifT , false) = λx :T. λy :T. y

δ(fixT , t) = t (fixT t)

1.3 The λH Type System

We next describe the (undecidable) λH type system via the collection of type

judgments and rules shown in Figure 1.4. The judgment E ` t : T checks that the term

t has type T in environment E; the judgment E ` T checks that T is a well formed

type in environment E; and the judgment E ` S <: T checks that S is a subtype

of T in environment E. The judgement E ` t1 ⇒ t2 is considered external to the

system; its axiomatization is discussed in Section 1.4. The rules for typing terms and

judging well formedness of environments and types are entirely standard. As usual, we

assume that variables are bound at most once in an environment and implicitly utilize

α-renaming of bound variables to maintain this assumption and to ensure substitutions

are capture-avoiding.

7



Figure 1.4: Type Rules

Type rules E ` t : T

(x : T ) ∈ E

E ` x : T
[T-Var]

E ` c : ty(c)
[T-Const]

E ` S E, x : S ` t : T

E ` (λx :S. t) : (x :S → T )
[T-Fun]

E ` t1 : (x :S → T ) E ` t2 : S

E ` t1 t2 : [x 7→ t2]T
[T-App]

E ` t : S E ` S <: T E ` T

E ` t : T
[T-Sub]

Well-formed types E ` T

E ` S E, x : S ` T

E ` x :S → T
[WT-Arrow]

E, x : B ` t : Bool
E ` {x :B | t}

[WT-Base]

Well-formed environment ` E

` ∅
[We-Empty]

` E E ` T

` E, x : T
[We-Ext]

Subtyping E ` S <: T

E ` T1 <: S1 E, x : T1 ` S2 <: T2

E ` (x :S1 → S2) <: (x :T1 → T2)
[S-Arrow]

E, x : B ` s ⇒ t

E ` {x :B | s} <: {x :B | t}
[S-Base]

8



The novel aspects of this system arise from its support of refinement types in

subtyping. A type {x :B | t} roughly denotes the set of constants c of type B for which

[x 7→c] t is valid. Subtyping between refinement types reduces to implication between

their refinement predicates (the formal details of the implication judgment E ` t1 ⇒ t2

is discussed in the next section). As an example, the rule [S-Base] states that the

subtyping judgment

∅ ` {x :Int |x > 0} <: {x :Int |x ≥ 0}

follows from the validity of the implication:

x : Int ` (x > 0) ⇒ (x ≥ 0)

Of course, checking implication between arbitrary predicates is undecidable,

which motivates the development of the hybrid type checking algorithm in the following

chapter.

1.4 Type Soundness

We prove soundness via the usual “progress” and “preservation” lemmas.

Throughout this section, environments are assumed to be well formed, to elide many

uninteresting antecedents.

As usual, a term is in normal form if it does not reduce to any subsequent

term, and a value v is either a λ-abstraction or a constant. We assume that the function

ty maps each constant to an appropriate type, in the following sense:

9



Assumption 1 (Types of Constants) For each c ∈ Constant:

1. The type of c is well formed, i.e. ∅ ` ty(c).

2. If c is a primitive function then it cannot “get stuck” and its operational behavior is

compatible with its type, i.e. if ∅ ` c v : T then [[c]](v) is defined and ∅ ` [[c]](v) : T

3. If c is a basic constant then it is the unique constant of its type, i.e. if ty(c) =

{x :B | t} then [x 7→c] t ∗ true and ∀c′ 6= c. [x 7→c′] t 6 ∗ true.

To remain flexible with regard to the logic used for implication, we leave the

judgement abstract, and assume only those properties necessary for proving soundness

of the type system.

Assumption 2 (Axioms of implication)

1. (Weakening) If E,G ` p ⇒ q then E, x : S, G ` p ⇒ q.

2. (Transitivity) If E ` p ⇒ q and E ` q ⇒ r then E ` p ⇒ r.

3. (Reflexivity) E ` p ⇒ p.

4. (Faithfulness) E ` p ⇒ true.

5. (Consistency) ∅ 6` true⇒ false.

6. (Evaluation) If p!∗ q then E ` p ⇒ q.

7. (Substitution) If E, x : S, F ` p ⇒ q and E ` t : S then E, θF ` θp ⇒ θq where

θ = [x 7→ t].

10



8. (Hypothesis) If ty(c) = {x :B | p}, a singleton type by Assumption 1, and E `

true⇒ [x 7→c] p then E, x : B ` x = c ⇒ p.

9. (Narrowing) If E, x : T, F ` p ⇒ q and E ` S <: T then E, x : S, F ` p ⇒ q.

The type system satisfies the standard type preservation (subject reduction)

property, supported by the usual lemmas along with the fact that types remain equiv-

alent when terms within them are reduced.

Lemma 3 (Weakening)

Let E = E1, E2 and E′ = E1, x : U,E2.

1. If E ` T and E ` S and E ` S <: T then E′ ` S <: T .

2. If E ` t : T then E′ ` t : T .

3. If E ` T then E′ ` T .

Proof:

(1) By straightforward induction on the derviation of E ` S <: T , using Weaken-

ing of implication in the case for rule [S-Base]

(2) and (3) By straightforward mutual induction on the derivations of E ` t : T

and E ` T , using part (1) in the case of rule [T-Sub] �

Lemma 4 (Substitution) Suppose

E1 ` s : S θ = [x 7→s] E = E1, x : S, E2 E′ = E1, θE2

Then

11



1. If E ` T1 <: T2 then E′ ` θT1 <: θT2.

2. If E ` T then E′ ` θT .

3. If E ` t : T then E′ ` θt : θT .

Proof:

(1) By straightforward induction on the derivation E ` T1 <: T2, using the Sub-

stitution axiom of implication in the case of [S-Base].

(2) and (3) By straightforward mutual induction on the derivations E ` t : T and

E ` T . The case for [T-Sub] uses part (1), and in the case for [T-Var] if t = x then

S = T and θt = s and we use weakening to extend E1 ` s : S to E′ ` s : S. �

Lemma 5 (Narrowing of Subtyping)

If E ` S <: T and E, x : T, F ` Q <: R then E, x : S, F ` Q <: R.

Proof: By straightforward induction over the derivation of E, x : T, F `

Q <: R using the Narrowing axiom of implication. �

Lemma 6 (Subtyping is a Preorder)

1. If E ` T then E ` T <: T

2. If E ` S <: T and E ` T <: U then E ` S <: U

Proof:

12



1. By induction on the derivation of E ` T , using the Reflexivity axiom of implica-

tion.

2. By induction on the derivation of E ` S <: T (followed by inversion on E `

T <: U) using Lemma 5 (Narrowing of Subtyping) for the bindings in function

types, and the Transitivity axiom of implication. �

Lemma 7 (Type Equivalence under Evaluation) If E ` S and S  T then E `

S <: T and E ` T <: S.

Proof: By induction on the derivation of S. In the base case of [WT-Base]

we invoke the Evaluation axiom of theorem proving. �

Theorem 8 (Preservation) If ` E and E ` s : T and s t then E ` t : T

Proof: By induction on the typing derivation E ` s : T , with case analysis on the

final rule applied.

Case [T-Var], [T-Const]: No evaluation rule applies.

Case [T-Fun], [T-Sub]: Immediate from the inductive hypothesis and Lemma 7.

Case [T-App]: Consider the possible evaluation rules:

Case [E-Prim]: Preservation holds by assumption 1 on constants.

Case [E-β]: Apply Lemma 4 (Substitution)

Case [E-Compat]: Apply the inductive hypothesis and in Lemma 7 (Type equiva-

lence under evaluation).

�
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The type system also satisfies the progress property, completing the syntactic

proof of type soundness. We require the usual lemma about canonical forms for types.

Lemma 9 (Canonical Forms) If ∅ ` v : (x :T1 → T2) then either

1. v = λx :S. s and ∅ ` T1 <: S and x : S ` s : T2, or

2. v is a constant and ty(c) is a subtype of x :T1 → T2.

Proof: By induction on ∅ ` v : x :T1 → T2.

Case [T-Var]: Does not apply to values

Case [T-Const]: Then we are in case 2.

Case [T-Fun]: Then v = λx :T1. s and x : S ` s : T2 so by reflexivity of subtyping we

meet case 1.

Case [T-Sub]: The lemma follows by induction and transitivity of subtyping. �

Theorem 10 (Progress) If ∅ ` s : T then either s is a value, or there exists some s′

such that s s′.

Proof: By induction on the derivation of ` s : T , considering the final rule applied.

Case [T-Var], [T-Const], [T-Fun]: Then t is already a value or not closed.

Case [T-Sub]: Immediate from the inductive hypothesis.

Case [T-App]: Then t = t1 t2. If t1 or t2 are not values, then by induction they can

evaluate hence t can as well. If both are values, then there are two possible forms for t1

(given by Canonical forms):

14



1. t1 is a constant of appropriate type – then its meaning function is defined by assump-

tion.

2. t1 is a lambda term, so β-reduction applies. �

1.5 Related Work

Research on advanced type systems has influenced our choice of how to express

program invariants. In particular, Freeman and Pfenning [1991] extended ML with

another form of refinement types. They do not support executable refinement predicates,

since their system provides both decidable type checking and type inference. Xi and

Pfenning have explored the practical application of dependent types in an extension of

ML called Dependent ML [Xi and Pfenning 1999; Xi 2000]. Decidability of type checking

is preserved by appropriately restricting which terms can appear in types. Despite these

restrictions, a number of interesting examples can be expressed in Dependent ML.

Ou, Tan, Mandelbaum, and Walker developed a type system similar to ours,

adding an interface between untyped code and code with refinement and dependent

types [Ou et al. 2004]. Though their system also includes mutable references, their

refinement predicates must be side-effect free, and may not call recursive functions.

15



Chapter 2

Hybrid Type Checking

Though ongoing research on more powerful type systems, such as those dis-

cussed in Section 1.5, attempts to overcome some of the restrictions discussed in Chapter

1, yet these systems are designed to be statically type safe, so the specification language is

intentionally restricted to ensure that specifications can always be checked statically. An

opposing approach is to abandon static checking entirely in favor of dynamic checking.

But this has significant disadvantages: First, it consumes cycles that could otherwise

perform useful computation. More seriously, dynamic checking provides limited cover-

age – specifications are only checked on data values and code paths of actual executions.

Thus, dynamic checking often results in incomplete and late (possibly post-deployment)

detection of defects.

Thus, the twin goals of complete checking and expressive specifications appear

to be incompatible in practice.1 Static type checking focuses on complete checking of
1Complete checking of expressive specifications could be achieved by requiring that each program

be accompanied by a proof (perhaps expressed as type annotations) that the program satisfies its

16



restricted specifications. Dynamic checking focuses on incomplete checking of expressive

specifications. Neither approach in isolation provides an entirely satisfactory solution

for enforcing precise interface specifications.

In this chapter, we describe an approach for validating precise interface spec-

ifications using a synthesis of static and dynamic techniques. By checking correctness

properties and detecting defects statically (whenever possible) and dynamically (only

when necessary), this approach of hybrid type checking provides a potential solution to

the limitations of purely static and purely dynamic approaches.

We illustrate the key idea of hybrid type checking by considering the type rule

for function application:

E ` t1 : T → T ′ E ` t2 : S E ` S <: T

E ` (t1 t2) : T ′

The antecedent E ` S <: T checks compatibility of the actual and formal parameter

types. If the type checker can prove this subtyping relation, then this application is

well typed. Conversely, if the type checker can prove that this subtyping relation does

not hold, then the program is rejected. In a conventional, decidable type system, one

of these two cases always holds.

However, once we consider expressive type languages that are not statically

decidable, the type checker may encounter situations where its algorithms can neither

prove nor refute the subtype judgment E ` S <: T (particularly within the time bounds

specification, but manually or interactively writing such proofs appears too heavyweight for widespread
use.

17



imposed by interactive compilation). A fundamental question in the development of

expressive type systems is how to deal with such situations where the compiler cannot

statically classify the program as either ill typed or well typed:

- Statically rejecting such programs would cause the compiler to reject some pro-

grams that, on deeper analysis, could be shown to be well typed. This approach

seems too brittle for use in practice since it would be difficult to predict which

programs the compiler would accept.

- Statically accepting such programs (based on the optimistic assumption that the

unproven subtype relations actually hold) may result in specifications being vio-

lated at run time, which is undesirable.

Hence, we argue that the most satisfactory approach is for the compiler to

accept such programs on a provisional basis, but to insert sufficient dynamic checks to

ensure that specification violations never occur at run time. Of course, checking that

E ` S <: T at run time is still a difficult problem and would violate the principle of phase

distinction [Cardelli 1988b]. Instead, our hybrid type checking approach transforms the

above application into the code

t1 (〈T / S〉 t2)

where the additional typecast or coercion 〈T / S〉 t2 dynamically checks that the value

produced by t2 is in the domain type T . Note that hybrid type checking supports

precise types, and T could in fact specify a detailed precondition of the function, for

18



Ill typed programs Well typed programs
Clearly ill typed Subtle programs Clearly well typed

Rejected by type checker Accepted Accepted without casts
with casts

Casts Casts
may never
fail fail

Figure 2.1: Hybrid type checking on various programs.

example, that it only accepts prime numbers. In this case, the run-time cast would

involve performing a primality check.

The behavior of hybrid type checking on various kinds of programs is illustrated

in Figure 2.1. Although every program can be classified as either ill typed or well

typed, for expressive type systems it is not always possible to make this classification

statically. However, the compiler can still identify some (hopefully many) clearly ill

typed programs, which are rejected, and similarly can identify some clearly well typed

programs, which are accepted unchanged.

For the remaining subtle programs, dynamic type casts are inserted to check

any unverified correctness properties at run time. If the original program is actually

well typed, these casts are redundant and will never fail. Conversely, if the original

program is ill typed in a subtle manner that cannot easily be detected at compile time,

the inserted casts may fail. As static analysis technology improves, we expect that the

category of subtle programs in Figure 2.1 will shrink, as more ill typed programs are

rejected and more well typed programs are fully verified at compile time.
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Hybrid type checking provides several desirable characteristics:

1. It supports precise interface specifications, which are essential for modular devel-

opment of reliable software.

2. As many defects as is possible and practical are detected at compile time (and we

expect this set will increase as static analysis technology evolves).

3. All well typed programs are accepted by the checker.

4. Due to decidability limitations, the hybrid type checker may statically accept some

subtly ill typed programs, but it will insert sufficient dynamic casts to guarantee

that specification violations never occur; they are always detected, either statically

or dynamically.

Our proposed specifications extend traditional static types, and so we view

hybrid type checking as an extension of traditional static type checking. In particular,

hybrid type checking supports precise specifications while preserving a key benefit of

static type systems; namely, the ability to detect simple errors at compile time. More-

over, as we shall see, for any decidable static type checker S, it is possible to develop a

hybrid type checker H that performs somewhat better than S in the following sense:

1. H dynamically detects errors that would be missed by S, since H supports more

precise specifications than S and can detect violations of these specifications dy-

namically.
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2. H statically detects all errors that would be detected by S, provided the speci-

fications have the same interpretation, since H can statically perform the same

reasoning as S.

3. H actually detects errors statically that S does not, since H supports more pre-

cise specifications, and could reasonably detect some violations of these precise

specifications statically.

The last property is perhaps the most surprising; Section 2.5 contains a proof that

clarifies this argument. Note that if S interprets specifications differently, there may be

faulty programs which are accepted by H but rejected by S, but the justification for

rejecting the program would not be valid in H.

Hybrid type checking may facilitiate the evolution and adoption of advanced

static analyses, by allowing software engineers to experiment with sophisticated spec-

ification strategies that cannot (yet) be verified statically. Such experiments can then

motivate and direct static analysis research. In particular, if a hybrid type checker fails

to decide (i.e., verify or refute) a subtyping query, it could send that query back to the

compiler writer. Similarly, if a hybrid-typed program fails an inserted cast 〈T 〉 v, the

value v is a witness that refutes an undecided subtyping query, and such witnesses could

also be sent back to the compiler writer. This information would provide concrete and

quantifiable motivation for subsequent improvements in the type checker’s analysis.

Indeed, just as different compilers for the same language may yield object code

of different quality, we might imagine a variety of hybrid type checkers with different
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trade-offs between static and dynamic checks (and between static and dynamic error

messages). Fast interactive hybrid compilers might perform only limited static analysis

to detect obvious type errors, while production compilers could perform deeper analyses

to detect more defects statically and to generate improved code with fewer dynamic

checks.

Hybrid type checking is inspired by prior work on soft typing [Fagan 1990;

Wright and Cartwright 1994; Aiken et al. 1994; Flanagan et al. 1996], but it extends

soft typing by rejecting many ill typed programs, in the spirit of static type checkers.

The interaction between static typing and dynamic checks has also been studied in the

context of type systems with the type Dynamic [Abadi et al. 1989; S. Thatte 1990], and

in systems that combine dynamic checks with dependent types [Ou et al. 2004]. Hybrid

type checking extends these ideas to support more precise specifications.

The general approach of hybrid type checking appears to be applicable to a

variety of programming languages and to various specification languages. We illustrate

the key ideas of hybrid type checking for a fairly expressive dependent type system that

is statically undecidable. Specifically, we work with an extension of λH developed in

the previous chapter.

2.1 Additional Syntax, Semantics, and Typing

The additional language constructs and their semantics (static and dynamic)

are shown in Figure 2.2. The cast 〈T / S〉 t dynamically checks that the result of t is

22



Figure 2.2: Additional Syntax, Semantics, and Typing

v ::= · · · Values:
〈T / S〉 type cast

s, t ::= · · · Terms:
〈T, t, c〉 check in progress

Additional Redex Evaluation s −→ t

〈x :T1 → T2 / x :S1 → S2〉 v −→ λx :T1. (〈T2 / S2〉 ◦ v ◦ 〈S1 / T1〉) x [E-Cast-F]

〈{x :B | t} / {x :B | s}〉 c −→ 〈{x :B | t}, [x 7→c] t, c〉 [E-Cast-Begin]

〈{x :B | s}, true, c〉 −→ c [E-Cast-End]

Additional Evaluation Contexts C, D

C ::= · · · | 〈T, C, c〉 | 〈D, t, c〉 | 〈T /D〉 | 〈D / S〉

Additional Type rules E ` t : T

E ` S E ` T

E ` 〈T / S〉 : S → T
[T-Cast]

E ` {x :B | t} E ` c : B E ` s : Bool E ` s ⇒ [x 7→c] t
E ` 〈{x :B | t}, s, c〉 : {x :B | t}

[T-Checking]
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of type T (in a manner similar to coercions [S. Thatte 1990], contracts [Findler 2002;

Findler and Felleisen 2002], and to type casts in languages such as Java [Gosling et al.

2005]).

The operational semantics of casts to function types is somewhat involved. As

described by the rule [E-Cast-F], casting a function t of type x : S1 → S2 to the type

x :T1 → T2 yields a new function

λx :T1. (〈T2 / S2〉 ◦ t ◦ 〈S1 / T1〉) x

where ◦ is the usual associative composition operator (in the absence of polymorphism,

we actually need a family of composition operators, as for fix and if). This function

is of the desired type x :T1 → T2 ; it takes an argument x of type T1, casts it to a value

of type S1, which is passed to the original function t, and the result of that application

is then cast to the desired result type T2. Thus, higher order casts are performed a lazy

fashion – the new casts 〈T2 / S2〉 and 〈T2 / T1〉 are performed at every application of

the resulting function, in a manner reminiscent of higher order contracts [Findler and

Felleisen 2002].2

The rules [E-Cast-Begin] and [E-Cast-End] deal with casting a basic con-

stant c to a base refinement type {x :B | t}. Via rule [E-Cast-Begin] a cast application

〈{x :B | t} / {x :B | s}〉 c evaluates to a cast-in-progress 〈{x :B | t}, [x 7→c] t, c〉. The in-

stantiated predicate [x 7→c] t then evaluates via the closure rule [E-Ctx], either diverging

or terminating in a value v. If v is true then the cast-in-progress evaluates to c, as it
2We ignore the issue of blame assignment in the event of a run-time cast failure – see [Gronski and

Flanagan 2007] for a detailed comparison
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has been dynamically verified that c has type {x :B | t}, otherwise the cast-in-progress

is “stuck.”

Note that these casts involve only familiar dynamic operations: tag checks,

predicate checks, and creating checking wrappers for functions. Thus, our approach

adheres to the principle of phase separation [Cardelli 1988b], in that there is no type

checking of actual program syntax at run time.

To conclude this section, before treating the hybrid type checking algorithm,

we note that the Preservation theorem holds as stated, with the implication E ` s ⇒

[x 7→c] t ensuring that when a cast ends, it has certainly checked the necessary property.

On the other hand, the Progress theorem holds only modulo failed casts – a

term may be “justifiably” stuck because a cast has failed.

Definition 11 (Failed Casts) A failed cast is a term of the form 〈{x :B | s}, t, c〉

where t cannot evaluate further, yet t 6= true.

Theorem 12 (Progress) If ∅ ` s : T then either s is a value, s contains a failed cast,

or there is some s′ such that s s′.

Proof: By induction on the derivation of ∅ ` s : T as before, except in the

case for [T-Checking] where s may be a failed cast. In combination with the Evaluation

axiom of theorem proving and specification of constants, the premise E ` s ⇒ [x 7→c] t

ensures that casts on basic constants can only get stuck when the constant does not

have the desired type. In the case for [T-App] we know that the function position cannot

be a failed cast because they occur only at base types, not function types. �
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2.2 Hybrid Type Checking for λH

We now describe how to perform hybrid type checking for the language λH .

We believe this general approach extends to other languages with similarly expressive

type systems.

Hybrid type checking relies on an algorithm for conservatively approximating

implication between predicates. We assume that for any conjectured implication E `

s ⇒ t, this algorithm returns one of three possible results, which we denote as follows:

- The judgment E `
√

alg s ⇒ t means the algorithm finds a proof that E ` s ⇒ t.

- The judgment E `×alg s ⇒ t means the algorithm finds a proof that E 6` s ⇒ t.

- The judgment E `?
alg s ⇒ t means the algorithm terminates due to a timeout

without either discovering a proof of either E ` s ⇒ t or E 6` s ⇒ t.

We lift this 3-valued algorithmic implication judgment E `a
alg s ⇒ t (where

a ∈ {
√

,×, ?}) to a 3-valued algorithmic subtyping judgment:

E `a
alg S <: T

as shown in Figure 2.3. The subtyping judgment between base refinement types reduces

to a corresponding implication judgment, via the rule [SA-Base]. Subtyping between

function types reduces to subtyping between corresponding contravariant domain and

covariant range types, via the rule [SA-Arrow]. This rule uses the following conjunction
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Figure 2.3: Cast insertion Rules

Cast insertion on terms E ` s ↪→ t : T

(x : T ) ∈ E

E ` x ↪→ x : T
[C-Var]

E ` c ↪→ c : ty(c)
[C-Const]

E ` S1 ↪→ T1 E, x : T1 ` s ↪→ t : T2

E ` (λx :S1. s) ↪→ (λx :T1. t) : (x :T1 → T2)
[C-Fun]

E ` s1 ↪→ t1 : (x :T1 → T2) E ` s2 ↪→ t2 ↓ T1

E ` s1 s2 ↪→ t1 t2 : [x 7→ t2]T2
[C-App]

Cast insertion and checking E ` s ↪→ t ↓ T

E ` s ↪→ t : S E `
√

alg S <: T

E ` s ↪→ t ↓ T
[CC-Ok]

E ` s ↪→ t : S E `?
alg S <: T

E ` s ↪→ 〈T / S〉 t ↓ T
[CC-Chk]

Cast insertion on types E ` S ↪→ T

E ` S1 ↪→ T1 E, x : T1 ` S2 ↪→ T2

E ` (x :S1 → S2) ↪→ (x :T1 → T2)
[C-Arrow]

E, x : B ` s ↪→ t : {y :Bool | t′}
E ` {x :B | s} ↪→ {x :B | t}

[C-Base]

Subtyping Algorithm E `a
alg S <: T

E `b
alg T1 <: S1 E, x : T1 `c

alg S2 <: T2 a = b⊗ c

E `a
alg (x :S1 → S2) <: (x :T1 → T2)

[SA-Arrow]

E, x : B `a
alg s ⇒ t a ∈ {

√
,×, ?}

E `a
alg {x :B | s} <: {x :B | t}

[SA-Base]
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operation ⊗ between three-valued results:

⊗
√

? ×

√ √
? ×

? ? ? ×

× × × ×

If the appropriate subtyping relation holds between the domain and range components

(i.e., b = c =
√

), then the subtyping relation holds between the function types (i.e.,

a =
√

). If the appropriate subtyping relation does not hold between either the domain

or range components (i.e., b = × or c = ×), then the subtyping relation does not hold

between the function types (i.e., a = ×). Otherwise, in the uncertain case, subtyping

may hold between the function types (i.e., a = ?). Thus, like the implication algorithm,

the subtyping algorithm need not return a definite answer in all cases.

Hybrid type checking uses this subtyping algorithm to type check the source

program, and to simultaneously insert dynamic casts to compensate for any indefinite

answers returned by the subtyping algorithm. We characterize this process of simulta-

neous type checking and cast insertion via the cast insertion judgment :

E ` s ↪→ t : T

Here, the environment E provides bindings for free variables, s is the original source

program, t is a modified version of the original program with additional casts, and T is

the inferred type for t. Since types contain terms, we extend this cast insertion process

to types via the judgment E ` S ↪→ T . Some of the cast insertion rules rely on the
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auxiliary cast insertion and checking judgment:

E ` s ↪→ t ↓ T

This judgment takes as input an environment E, a source term s, and a desired result

type T , and checks that s is converted by cast insertion to a term of this result type.

The rules defining these judgments are shown in Figure 2.3 are mostly straight-

forward. The rules [C-Var] and [C-Const] say that variable references and constants do

not require additional casts. The rule [C-Fun] inserts casts into an abstraction λx :S1. s

by first inserting casts into the type S1 to yield T1 and then processing s to yield a term

t of type T2; the resulting abstraction λx :T1. t has type x :T1 → T2. Rule [C-Cast] sim-

ilarly recurses on the part of a cast. The rule [C-App] for an application s1 s2 processes

s1 to a term t1 of type x :T1 → T2 then invokes the cast insert and checking judgement

to convert s2 into a term of the appropriate argument type T1.

The two rules defining the cast insertion and checking judgment E ` s ↪→ u ↓

T demonstrate the key idea of hybrid type checking. Both rules start by processing s to

a term t of some type S. The crucial question is then whether this type S is a subtype

of the expected type T :

• If the subtyping algorithm succeeds in proving that S is a subtype of T (i.e.,

E `
√

alg S <: T ), then t is clearly of the desired type T , and so the rule [CC-Ok]

returns t.

• If the subtyping algorithm can show that S is not a subtype of T (i.e., E `×alg

S <: T ), then the program is rejected since no rule is applicable.
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• Otherwise, in the uncertain case where E `?
alg S <: T , the rule [CC-Chk] inserts

the type cast 〈T / S〉 to dynamically ensure that values returned by t are actually

of the desired type T .

These rules for cast insertion and checking illustrate the key benefit of hybrid type

checking: specific static analysis problem instances (such as E ` S <: T ) that are unde-

cidable or computationally intractable can be avoided in a convenient manner simply by

inserting appropriate dynamic checks. Of course, we should not abuse this facility, and

so ideally the subtyping algorithm should yield a precise answer in most cases. How-

ever, the critical contribution of hybrid type checking is that it avoids the very strict

requirement of demanding a precise answer for all subtyping questions.

Cast insertion on types is straightforward. The rule [C-Arrow] inserts casts in

the domain and codomain of a function type x :S → T and reassembles the components.

The rule [C-Base] inserts casts into the refinement t of a base type {x :B | t}, producing

t′ (whose type should be a subtype of Bool), and then yielding the base refinement type

{x :B | t′}.

Since checking well formedness of a type is actually a cast insertion process

which returns a well formed type (possibly with added casts), we only perform cast

insertion on types where necessary, at λ-abstractions and casts, when we encounter

(possibly ill formed) types in the source program. In particular, the cast insertion rules

do not explicitly check that the environment is well formed, since that would involve

repeatedly processing all types in that environment. Instead, the rules assume that the

environment is well formed.
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2.3 An Example

To illustrate the behavior of the cast insertion algorithm, consider a function

serializeMatrix that serializes an n by m matrix into an array of size n × m. We

extend the language λH with two additional base types:

• Array, the type of one dimensional arrays containing integers.

• Matrix, the type of two dimensional matrices, again containing integers.

The following primitive functions return the size of an array; create a new array of the

given size; and return the width and height of a matrix, respectively:

asize : a :Array→ Int

newArray : n :Int→ {a :Array | asize a = n}

matrixWidth : a :Matrix→ Int

matrixHeight : a :Matrix→ Int

We introduce the following type abbreviations to denote arrays of size n and matrices

of size n by m:

Arrayn
def= {a :Array | asize a = n}

Matrixn,m
def= {a :Matrix | (matrixWidth a = n ∧ matrixHeight a = m)}

The shorthand t as T ensures that the term t has type T by passing t as an argument

to the identity function of type T → T :

t as T
def= (λx :T. x) t

We now define the function serializeMatrix as:
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(
λn :Int. λm :Int. λa :Matrixn,m. let r = newArray e in . . . ; r

)
as T

The elided term . . . initializes the new array r with the contents of the matrix a, and we

will consider several possibilities for the size expression e. The type T is the specification

of serializeMatrix:

T
def= (n :Int→ m :Int→ Matrixn,m → Arrayn×m)

For this declaration to type check, the inferred type Arraye of the function’s

body must be a subtype of the declared return type:

n : Int, m : Int ` Arraye <: Arrayn×m

Checking this subtype relation reduces to checking the implication:

n : Int, m : Int, a : Array ` (asize a = e) ⇒ (asize a = (n×m))

which in turn reduces to checking the equality:

∀n, m ∈ Int. e = n×m

The implication checking algorithm might use an automatic theorem prover (e.g., Detlefs

et al. [2005]; Blei et al. [2000]) to verify or refute such conjectured equalities.

We now consider three possibilities for the expression e:

1. If e is the expression n×m, the equality is trivially true, and no additional casts

are inserted (even in the presence of an extremely weak theorem prover).
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2. If e is m× n (i.e., the order of the multiplicands is reversed), and the underlying

theorem prover can verify

∀n, m ∈ Int. m× n = n×m

then no casts are yet necessary. Note that a theorem prover which is not complete

for arbitrary multiplications might still have a specific axiom about the commu-

tativity of multiplication.

If the theorem prover is too limited to verify this equality, the hybrid type checker

will still accept this program. However, to compensate for the limitations of the

theorem prover, the hybrid type checker will insert a redundant cast, yielding the

function (where due to space constraints we have elided the source type of the

cast): 〈T 〉
λn :Int. λm :Int. λa :Matrixn,m.

let r = newArray e in . . . ; r


 as T

This term can be optimized, via [E-β] and [E-Cast-F] steps and via removal of

clearly redundant 〈Int / Int〉 casts, to:

λn :Int. λm :Int. λa :Matrixn,m.

let r = newArray (m× n) in

. . . ;

〈Arrayn×m / Arraym×n〉 r

The remaining cast checks that the result value r is of the declared return type

Arrayn×m, which reduces to dynamically checking that the predicate:

asize r = n×m
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evaluates to true, which it does.

3. Finally, if e is erroneously m×m, the function is ill typed. By performing random

or directed [Godefroid et al. 2005] testing of several values for n and m until it finds

a counterexample, the theorem prover might reasonably refute the conjectured

equality:

∀n, m ∈ Int. m×m = n×m

In this case, the hybrid type checker reports a static type error.

Conversely, if the theorem prover is too limited to refute the conjectured equality,

then the hybrid type checker will produce (after optimization) the program:

λn :Int. λm :Int. λa :Matrixn,m.

let r = newArray (m×m) in

. . . ;

〈Arrayn×m / Arraym×m〉 r

If this function is ever called with arguments for which m×m 6= n×m, then the

cast will detect the type error.

Note that prior work on practical dependent types [Xi and Pfenning 1999] could

not handle any of these cases, since the type T uses nonlinear arithmetic expressions.

In contrast, case 2 of this example demonstrates that even fairly partial techniques for

reasoning about complex specifications (e.g., commutativity of multiplication, random

testing of equalities) can facilitate static detection of defects. Furthermore, even though

catching errors at compile time is ideal, catching errors at run time (as in case 3) is
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still clearly an improvement over not detecting these errors at all, leading to subsequent

crashes or incorrect results.

2.4 Correctness of Cast Insertion

Since hybrid type checking relies on necessarily incomplete algorithms for sub-

typing and implication, we next investigate what correctness properties are guaranteed

by this cast insertion process.

We assume the 3-valued algorithm for checking implication between boolean

terms is sound in the following sense:

Assumption 13 (Soundness of E `a
alg s ⇒ t) Suppose ` E.

1. If E `
√

alg s ⇒ t then E ` s ⇒ t.

2. If E `×alg s ⇒ t then E 6` s ⇒ t.

Note that this algorithm does not need to be complete (indeed, an extremely

naive algorithm could simply return E `?
alg s ⇒ t in all cases). A consequence of

the soundness of the implication algorithm is that the algorithmic subtyping judgment

E `alg S <: T is also sound.

Lemma 14 (Soundness of E `a
alg S <: T ) Suppose ` E.

1. If E `
√

alg S <: T then E ` S <: T .

2. If E `×alg S <: T then E 6` S <: T .
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Proof: By induction on derivations using Assumption 13. �

Becasue algorithmic subtyping is sound, the hybrid cast insertion algorithm

generates only well typed programs:

Theorem 15 (Compilation Type Soundness) Suppose ` E.

1. If E ` t ↪→ t′ : T then E ` t′ : T .

2. If E ` t ↪→ t′ ↓ T and E ` T then E ` t′ : T .

3. If E ` T ↪→ T ′ then E ` T ′.

Proof: By induction on cast insertion derivations. �

Since the generated code is well typed, standard type-directed cast insertion

and optimization techniques [Tarditi et al. 1996; Morrisett et al. 1999] are applicable.

Furthermore, the generated code includes all the type specifications present in the orig-

inal program, and so by the Preservation Theorem these specifications will never be

violated at run time. Any attempt to violate a specification is detected via a combina-

tion of static checking (where possible) and dynamic checking (only when necessary).

If closed term t has type S which is a subtype of T , then it is almost self-

evident that t is equivalent to 〈T / S〉 t, hence casts inserted during compilation are

redundant. Rather than prove this directly from the evaluation relation, we present a

straightforward argument based on the usual notion of extensionality for functions.

Lemma 16 (Behavioral Correctness of Cast Insertion) If ` t : S and ` S <: T

then t is observationally equivalent to 〈T / S〉 t
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Proof: By induction on the height of T in terms of the function space arrow – which

equals the height of S.

Case T is a refined base type {y :B | s}. Then t either diverges, or evaluates to a basic

constant c of type B, in which case [y 7→ c] s  ∗ true by assumption and the cast

succeeds, evaluating to c. Confluence of evaluation then assures that t, c, and 〈T / S〉 t

are observationally equivalent.

Case T is a function type y :T1 → T2. Then S = y :S1 → S2 by inversion of subtyping,

and we invoke extensionality. Consider any s of type T1. Since T1 is a subtype of S1,

also s has type S1 and by induction is equivalent to 〈S1 / T1〉 s. Now t s has type

[y 7→s]T2 so by induction and combined with the above, we have

t s = 〈[y 7→s]T1 / [y 7→s]S2〉 t (〈S1 / T1〉 s)

which is an unfolding of the result of the function cast so t is observationally equivalent

to 〈y :T1 → T2 / y :S1 → S2〉 t �

Since for a well typed term cast insertion inserts only such redundant casts, it

does not change the behavior of well typed programs. This is key to understanding a

form of completeness for hybrid type checking.

Theorem 17 (Completeness of Cast Insertion)

1. If E ` s : S then ∃t, T such that E ` s ↪→ t : T .

2. If E ` s : S and E ` S <: T then ∃t such that E ` s ↪→ t ↓ T .

3. If E ` S then ∃T such that E ` S ↪→ T .
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Proof: By mutual induction on the antecedent derivations.

1. Case [T-Var], [T-Const] : Immediate.

Case [T-Sub] : Immediate from the subderivation.

Case [T-App], [T-Fun] : By induction, we can insert casts into each subterm yielding

well typed terms which we reassemble. Lemmas 7 and 16 ensure that the types

involved remain equivalent under cast insertion, so all the same subtyping judgements

hold.

2. By part one, there exist t and U such that E ` s ↪→ t : U . By Lemma 14 we know

that E ` t : S, so a sound algorithmic subtyping relation cannot reject t, but only

insert casts, yielding t′ such that E ` t ↪→ t′ ↓ T .

3. Straightforward by induction, since valid implications may not be rejected. �

2.5 Static Checking vs. Hybrid Checking

Given the proven benefits of traditional, purely static type systems, an impor-

tant question that arises is how hybrid type checkers compare to conventional static

type checkers.

On the experimental side, the Sage language implementation demonstrates

that hybrid type checking interacts comfortably with a variety of typing constructs,

including first-class types, polymorphism, recursive data structures, as well as the type

Dynamic, and that the number of inserted casts for some example programs is low or

none [Gronski et al. 2006].
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So let us now examine this question theoretically. Suppose we are given a

static type checker that targets a restricted subset of λH for which type checking is

statically decidable. Specifically, we assume there exists a subset D of Term such that

for all t1, t2 ∈ D and for all environments E (containing only D-terms), the judgment

E ` t1 ⇒ t2 is decidable. We introduce the language λS that is obtained from λH by

only permitting D-terms in refinement types.

As an extreme, we could take D = {true}, in which case the λS type language

is essentially the simply typed λ-calculus:

T ::= B | T → T

However, to yield a more general argument, we assume only that D is a subset of Term

for which implication is decidable. It then follows that subtyping and type checking for

λS are also decidable, and we denote this type checking judgment as E `S t : T .

Clearly, the hybrid implication algorithm can give precise answers on (decid-

able) D-terms, and so we assume that for all t1, t2 ∈ D and for all environments E, the

judgment E `a
alg t1 ⇒ t2 holds for some a ∈ {

√
,×}. Under this assumption, hybrid

type checking behaves identically to static type checking on (well typed or ill typed) λS

programs.

Theorem 18 For all λS terms t, λS environments E, and λS types T , the following

three statements are equivalent:

1. E `S t : T

2. E ` t : T
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3. E ` t ↪→ t : T

Proof: The hybrid implication algorithm is complete on D-terms, and hence the hy-

brid subtyping algorithm is complete for λS types. The proof then follows by induction

on typing derivations.

Thus, to a λS programmer, a hybrid type checker behaves exactly like a traditional

static type checker.

We now compare static and hybrid type checking from the perspective of a

λH programmer. To enable this comparison, we need to map expressive λH types into

the more restrictive λS types, and in particular to map arbitrary boolean terms into

D-terms. We assume the computable function

γ : Term → D

performs this mapping. The function erase then maps λH refinement types to λS

refinement types by using γ to abstract boolean terms:

erase{x :B | t} = {x :B | γ(t)}

We extend erase in a compatible manner to map λH types, terms, and environments to

corresponding λS types, terms, and environments. Thus, for any λH program P , this

function yields the corresponding λS program erase(P ).

As might be expected, the erase function must lose information, with the

consequence that for any computable mapping γ there exists some program P such that

hybrid type checking of P performs better than static type checking of erase(P ). In
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other words, because the hybrid type checker supports more precise specifications, it

performs better than a traditional static type checker, which necessarily must work with

less precise but decidable specifications.

Theorem 19 For any computable mapping γ either:

1. the static type checker rejects the erased version of some well typed λH program,

or

2. the static type checker accepts the erased version of some ill typed λH program for

which the hybrid type checker would statically detect the error.

Proof: Let E be the environment x : Int.

By reduction from the halting problem, the judgment E ` t ⇒ false for

arbitrary boolean terms t is undecidable. However, the implication judgment E `

γ(t) ⇒ γ(false) is decidable. Hence these two judgments are not equivalent, i.e.:

{t | (E ` t ⇒ false)} 6= {t | (E ` γ(t) ⇒ γ(false))}

It follows that there must exists some witness w that is in one of these sets but not the

other, and so one of the following two cases must hold.

1. Suppose:

E ` w ⇒ false

E 6` γ(w) ⇒ γ(false)

We construct as a counter-example the program P1:

P1 = λx :{x :Int |w}. (x as {x :Int | false})
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From the assumption E ` w ⇒ false the subtyping judgment

∅ ` {x :Int |w} <: {x :Int | false}

holds. Hence, P1 is well typed, and (by Theorem 17) is accepted by the hybrid

type checker. However, from the assumption E 6` γ(w) ⇒ γ(false) the erased

version of the subtyping judgment does not hold:

∅ 6` erase({x :Int |w}) <: erase({x :Int | false})

Hence erase(P1) is ill typed and rejected by the static type checker.

2. Conversely, suppose:

E 6` w ⇒ false

E ` γ(w) ⇒ γ(false)

From the first supposition and by the definition of the implication judgment, there

exists integers n and m such that

[x 7→n]w −→m true

We now construct as a counter-example the program P2:

P2 = λx :{x :Int |w}. (x as {x :Int | false ∧ (n = m)})

In the program P2, the term n = m has no semantic meaning since it is conjoined

with false. The purpose of this term is to serve only as a “hint” to the follow-

ing rule for refuting implications (which we assume is included in the reasoning

performed by the implication algorithm). In this rule, the integers a and b serve
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as hints, and take the place of randomly generated values for testing if t ever

evaluates to true.

[x 7→a] t −→b true

E `×alg t ⇒ (false ∧ a = b)

This rule enables the implication algorithm to conclude that:

E `×alg w ⇒ false ∧ (n = m)

Hence, the subtyping algorithm can conclude:

`×alg {x :Int |w} <: {x :Int | false ∧ (n = m)}

Therefore, the hybrid type checker rejects P2, which by Lemma 17 is therefore ill

typed.

∀P, T. 6` P2 ↪→ P : T

We next consider how the static type checker behaves on the program erase(P2).

We consider two cases, depending on whether the following implication judgement

holds:

E ` γ(false) ⇒ γ(false ∧ (n = m))

(a) If this judgment holds then by the transitivity of implication and the as-

sumption E ` γ(w) ⇒ γ(false) we have that:

E ` γ(w) ⇒ γ(false ∧ (n = m))

Hence the subtyping judgement

∅ ` {x :Int | γ(w)} <: {x :Int | γ(false ∧ (n = m))}
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holds and the program erase(P2) is accepted by the static type checker:

∅ ` erase(P2) : {x :Int | γ(w)} → {x :Int | γ(false ∧ (n = m))}

(b) If the above judgment does not hold then consider as a counter-example the

program P3:

P3 = λx :{x :Int |false}. (x as {x :Int | false ∧ (n=m)})

This program is well typed, from the subtype judgment:

∅ ` {x :Int | false} <: {x :Int | false ∧ (n = m)}

However, the erased version of this subtype judgment does not hold:

∅ 6` erase({x :Int |false}) <: erase({x :Int | false ∧(n=m)})

Hence, erase(P3) is rejected by the static type checker:

∀T. ∅ 6`S erase(P3) : T �

Note that in the second case of the proof, we see that a pessimistic erasure will

allow the static checker to reject some faulty programs that the hybrid checker cannot.

For example, replacing instances of the halting problem with instances of the bounded-

length halting problem, or generally when ¬t implies ¬γ(t). The converse does not hold

in general, so we can be certain that S rejects good programs as well.
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2.6 Related Work

Much prior work has focused on dynamic checking of expressive specifications,

or contracts [Meyer 1988; Findler and Felleisen 2002; Leavens and Cheon 2005; Gomes

et al. 1996; Holt and Cordy 1988; Luckham 1990; Parnas 1972; Kölling and Rosen-

berg 1997]. An entire design philosophy, Contract Oriented Design, has been based on

dynamically-checked specifications. Hybrid type checking embraces precise specifica-

tions, but extends prior purely dynamic techniques to verify (or detect violations of)

expressive specifications statically, wherever possible.

The programming language Eiffel [Meyer 1988] supports a notion of hybrid

specifications by providing both statically-checked types as well as dynamically-checked

contracts. Having separate (static and dynamic) specification languages is somewhat

awkward, since it requires the programmer to factor each specification into its static

and dynamic components. Furthermore, the factoring is too rigid, since the specification

needs to be manually refactored to exploit improvements in static checking technology.

Other authors have considered pragmatic combinations of both static and dy-

namic checking. Abadi et al. [1989] extended a static type system with a type Dynamic

that could be explicitly cast to and from any other type (with appropriate run-time

checks). Henglein [1994] characterized the completion process of inserting the neces-

sary coercions, and presented a rewriting system for generating minimal completions.

S. Thatte [1990] developed a similar system in which the necessary casts are implicit.

These systems are intended to support looser type specifications. In contrast, our work
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uses similar, automatically-inserted casts to support more precise type specifications.

An interesting avenue for further exploration is the combination of both approaches

to support a large range of specifications, from Dynamic at one end to precise hybrid-

checked specifications at the other.

The static checking tool ESC/Java [Flanagan et al. 2002] checks expressive

JML specifications [Burdy et al. 2003; Leavens and Cheon 2005] using the Simplify

automatic theorem prover [Detlefs et al. 2005]. However, Simplify does not distinguish

between failing to prove a theorem and finding a counter-example that refutes the

theorem, and so ESC/Java’s error messages may be caused either by incorrect programs

or by limitations in its theorem prover.

The limitations of purely static and purely dynamic approaches have also mo-

tivated other work on hybrid analyses. For example, CCured [Necula et al. 2002] is a

sophisticated hybrid analysis for preventing the ubiqutous array bounds violations in

the C programming language. Unlike our proposed approach, it does not detect errors

statically – instead, the static analysis is used to optimize the run-time analysis. Spe-

cialized hybrid analyses have been proposed for other problems as well, such as data

race condition checking [von Praun and Gross 2001; O’Callahan and Choi 2003; Agarwal

and Stoller 2004].

Prior work (e.g. [Breazu-Tannen et al. 1991]) introduced and studied implicit

coercions in type systems. Note that there are no implicit coercions in the λH type

system itself, but only in the cast insertion algorithm, and so we do not need a coherence

theorem for λH , but instead reason about the connection between the type system and
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cast insertion algorithm.
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Chapter 3

Type Reconstruction

We have addressed the problem of type-checking for a language like λH , given

complete type annotation by the programmer, but even for small examples, writing

explicitly typed terms can be tedious, and would become truly onerous for larger pro-

grams. To reduce the annotation burden, many typed languages – such as ML, Haskell,

and their variants – perform type reconstruction, often stated as: Given a program

containing type variables, find a replacement for those variables such that the resulting

program is well typed. If there exists such a replacement, the program is said to be

typeable. Under this definition, type reconstruction subsumes type checking. Hence,

for expressive and undecidable type systems, such as that of λH , type reconstruction is

clearly undecidable.

Instead of surrendering to undecidability, we separate type reconstruction from

type checking, and define the type reconstruction problem as: Given a program con-

taining type variables, find a replacement for those variables such that typeability is
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preserved. In a decidable type system, this definition coincides with the previous one,

since the type checker can decide if the resulting explicitly typed program is well typed.

The generalized definition also extends to undecidable type systems, since alternative

techniques, such as hybrid type checking, can be applied to the resulting program. In

particular, type reconstruction for λH is now decidable!

Our approach to inferring refinement predicates is inspired by techniques from

axiomatic semantics, most notably the strongest postcondition (SP) transformation [Back

1988]. This transformation supports arbitrary predicates in some specification logic, and

computes the most precise correctness predicate for each program point. It is essentially

syntactic in nature, deferring all semantic reasoning to a subsequent theorem-proving

phase. For example, looping constructs in the program are expressed simply as fixpoint

operations in the specification logic.

In the richer setting of λH , which includes higher order functions with depen-

dent types, we must infer both the structural shape of types and also any refinement

predicates they contain. We solve the former using traditional type reconstruction tech-

niques, and the latter using a syntactic, SP-like, transformation. Like SP, our algorithm

infers the most precise predicates possible.

The resulting, explicitly typed program can then be checked by the λH com-

pilation algorithm [Flanagan 2006], which reasons about local implications between

refinement predicates. If the compilation algorithm cannot prove or refute a particular

implication, it dynamically enforces the desired property via a run-time check. These

dynamic checks are only ever necessary for user-specified predicates; inferred predicates
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(which may include existential quantification and fixpoint operations) are correct by

construction.

3.1 Type Reconstruction

For the type reconstruction problem, we consider only the basic language,

ignoring casts since they add no interest to type reconstruction.

We extend the type language with type variables α ∈ TyV ar. Type reconstruc-

tion yields a function π : TyV ar → Type, here called a type replacement. Application

of a type replacement is lifted compatibly to all syntactic sorts, and is not capture

avoiding.

The three phases of type reconstruction proceed as follows:

1. The input program is processed to yield a set C of subtyping constraints of the

form E ` S <: T (the same as the subtyping judgement).

2. The shape reconstruction phase then reduces C into a set P of implication con-

straints, each of the form E ` p ⇒ q (the same as the implication judgement).

3. The last phase of type reconstruction solves P .

To facilitate our development, we require that the language be closed under

substitution. But a substitution cannot immediately be applied to a type variable, so
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each type variable α has an associated delayed substitution θ (which may be empty).

T ::= · · · | θ · α

θ ::= [ ] | [x 7→ t : T ], θ

The usual definition of capture-avoiding substitution is extended to type variables, which

simply delay that substitution:

[x 7→ s : T ] (θ · α) = ([x 7→ s : T ], θ) · α

When a type replacement is applied to a type variable α with a delayed sub-

stitution θ, the substitution π(θ) is immediately applied to π(α):

π(θ · α) = π(θ)(π(α))

Notice that we have added a type annotation to these explicit substitution –

this is for later syntactic processing and does not affect the semantics of substitution.

3.2 Constraint Generation

The constraint generation judgement E ` t : T & C is defined in Figure

3.1 and reads: term t has type T in environment E, subject to the constraint set C.

Each rule is derived from the corresponding type rule, with subsumption distributed

throughout the derivation to make the rules syntax-directed.

For a type replacement π, if π(C) contains only valid subtyping relationships,

then π satisfies C. When applied to a typeable λH program, the constraint generation

rules emit a satisfiable constraint set. Conversely, if the constraint set derived from a

program is satisfiable, then that program is typeable.
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Figure 3.1: Constraint Generation Rules

Constraint Generation rules E ` t : T & C

(x : T ) ∈ E

E ` x : T & ∅
[CG-Var]

E ` c : ty(c) & ∅
[CG-Const]

E ` S & C1 E, x : S ` t : T & C2

E ` (λx :S. t) : (x :S → T ) & C1 ∪ C2

[CG-Fun]

E ` t1 : T & C1 E ` t2 : S & C2 α fresh

E ` t1 t2 : [x 7→ t2 : S] · α & C1 ∪ C2 ∪ {E ` T <: (x :S → α)}
[CG-App]

Well-formed Type Constraint Generation E ` T & C

E ` S & C1 E, x : S ` T & C2

E ` x :S → T & C1 ∪ C2

[WTC-Arrow]

E, x : B ` t : Bool & C

E ` {x :B | t} & C

[WTC-Base]

E ` θ · α & ∅
[WTC-Var]
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Lemma 20 For any environment E and term t:

∃π, T. π(E) ` π(t) : π(T ) ⇐⇒ ∃π′, S, C.


E ` t : S & C

π′ satisfies C

Proof: (⇒): Suppose πE ` πt : πT . then ∃π′, S, C.E ` t : S & C and π′π satisfies

C and πE ` π′πS <: πT . Proceed by induction on the derivation of πE ` πt : πT ,

with this strengthened hypothesis.

Case [T-App]: Given: t = t1 t2 and T = [x 7→ t2 : T1]T2 where

πE ` πt1 : x :πT1 → πT2 πE ` πt2 : πT1

πE ` πt1 πt2 : [x 7→ πt2 : T1] (πT2)

By induction we have π1, π2, S1, S2, C1, C2 such that

E ` t1 : S1 & C1 π1π satisfies C1 πE ` π1πS1 <: x :πT1 → πT2

E ` t2 : S2 & C2 π2π satisfies C2 πE ` π2πS2 <: πT1

Hence by [CG-App] we derive E ` t1 t2 : [x 7→ t2 : S2]α & C where C =

C1 ∪ C2 ∪ {E ` S1 <: x :S2 → α}, α fresh. Note that dom(π1), dom(π2), α are

pairwise disjoint.

Let π′(α) = [α 7→ π(T2)] ◦ π1π2. Then π′π(C) = (π1πC1) ∪ (π2πC2) ∪ {πE `

π1πS1 <: x :π2πS2 → πT2} where the indicated subtyping constraint is valid (with

the given data, apply [S-Arrow], reflexivity and transivitity of subtyping). Thus

π′π satisfies C.

And finally, π′π(α[x 7→ t2 : S2]) = π(T2[x 7→ t2 : S1])

hence πE ` π′π(α[x 7→ t2 : S2]) <: π(T2[x 7→ t2 : T1])
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The remaining cases and reverse direction are straightforward. �

Consider the following λH term t (the expression let x : T = s in t is syntactic

sugar for (λx :T. t) s).

let id : (x :α1 → α2) = λx :α3. x in

let w : {n :Int |n = 0} = 0 in

let y : {n :Int |n > w} = 3 in

id (id y)

Eliding some generated type variables for clarity, the corresponding constraint

generation judgement is

∅ ` t : [x 7→ (id y) : α1] · α2 & C

where C contains the following constraints, in which Tid ≡ (x : α1 → α2) and Ty ≡

{n :Int |n > w}:

∅ ` x :α3 → α3 <: x :α1 → α2

id : Tid ` {n :Int |n = 0} <: {n :Int |n = 0}

id : Tid, w : {n :Int |n = 0} ` {n :Int |n = 3} <: {n :Int |n > w}

id : Tid, w : {n :Int |n = 0}, y : Ty ` {n :Int |n > w} <: α1

id : Tid, w : {n :Int |n = 0}, y : Ty ` [x 7→ y : α1] · α2 <: α1

3.3 Shape Reconstruction

The second step of reconstruction is to infer a type’s basic shape, ignoring

refinement predicates. To defer reconstruction of refinements, we introduce placeholders
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γ ∈ Placeholder to represent unknown refinement predicates (in the same way that

type variables represent unknown types) Like type variables, each placeholder has an

associated delayed substitution.

t ::= · · · | θ · γ

A placeholder replacement is a function ρ : Placeholder → Term and is lifted com-

patibly to all syntactic structures. As with type replacements, applying placeholder

replacement allows any delayed substitutions also to be applied.

[x 7→ t : T ](θ · γ) = ([x 7→ t : T ], θ) · γ

ρ(θ · γ) = ρ(θ)(ρ(γ))

The shape reconstruction algorithm, detailed in Figure 3.2 takes as input a

subtyping constraint set C and processes the constraints in C nondeterministically ac-

cording to the rules in Figure 3.2. When the conditions on the left-hand side of a rule

are satisfied, the updates described on the right-hand side are performed. The set P of

implication constraints, each of the form E ` p ⇒ q, and the type replacement π are

outputs of the algorithm. For a placeholder replacement ρ, if ρ(P ) contains only valid

implications, then ρ satisfies P .

Each rule in Figure 3.2 resembles a step of traditional type reconstruction.

When a type variable α must have the shape of a function type, it is replaced by

x :α1 → α2, where α1 and α2 are fresh type variables. The function occurs checks that

α has a finite solution, since λH does not have recursive types. Occurences of α which

appear in refinement predicates or in the range of a delayed substitution are ignored –
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Figure 3.2: Shape Reconstruction Algorithm

Input: C

Output: π, P

Initially: P = ∅ and π = [ ]

match some constraint in C until quiescent:

E ` θ · α <: x :T1 → T2

or E ` x :T1 → T2 <: θ · α

=⇒ if occurs(α, x :T1 → T2) then fail

otherwise for fresh α1, α2

π := [α 7→ x :α1 → α2] ◦ π

C := π(C)

P := π(P )

E ` θ · α <: {x :B | t}

or E ` {x :B | t} <: θ · α

=⇒ for fresh γ

π := [α 7→ {x :B | γ}] ◦ π

C := π(C)

P := π(P )

E ` (x :S1 → S2) <: (x :T1 → T2) =⇒ C := C ∪


E ` T1 <: S1,

E, x : T1 ` S2 <: T2


E ` {x :B | p} <: {x :B | q} =⇒ P := P ∪ {E ` p ⇒ q}

E ` {x :B | p} <: x :S → T

or E ` x :S → T <: {x :B | p}
=⇒ fail
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these occurences do not require a solution involving recursive types.

occurs(α, {x :B | t}) = false

occurs(α, θ · α′) = false (α 6= α′)

occurs(α, θ · α) = true

occurs(α, x :S → T ) = occurs(α, S) ∨ occurs(α, T )

When a type variable must be a refinement of a base type B, the type variable is

replaced by {x :B | γ} where γ is a fresh placeholder. A subtyping constraint between

two function types induces additional constraints between the domains and codomains

of the function types. When two refined base types are constrained to be subtypes, a

corresponding implication constraint between their refinements is added to P .

The algorithm terminates once no more progress can be made. At this stage,

any type variables remaining in π(C) are not constrained to be subtypes of any concrete

type but may be subtypes of each other. We set these type variables equal to an arbitrary

concrete type to eliminate them (the resulting subtyping judgements are trivial by

reflexivity).

Lemma 21 For a set of subtyping constraints C, one of the following occurs:

1. Shape reconstruction fails, in which case C is unsatisfiable, or

2. Shape reconstruction succeeds, yielding π and P . Then P is satisfiable if and only

if C is satisfiable. Furthermore, if ρ satisfies P then ρ ◦ π satisfies C.

Proof:
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Case 1: By inversion of subtyping and lack of recursive types, C is unsatisfiable.

Case 2: Each step of the algorithm maintains the invariant that C is satisfiable if and

only if there exists some π′ and ρ such that ρπ′πC contains only valid subtyping

relationships.

When shape reconstruction terminates, π′ is necessarily empty since all type

variables are eliminated. The aforementioned ρ also satisfies P by inversion of

[S-Base].

Then for any other ρ′ which satisfies P , see that all constraints involving implica-

tion that were satisfied by ρ are also satisfied by ρ′ thus ρ′π satisfies C. �

Returning to our example, shape reconstruction returns the type replacement

π = [ α1 := {n :Int | γ1}, α2 := {n :Int | γ2}, α3 := {n :Int | γ3} ]

and the following implication constraint set P , in which Tid = x : {n :Int | γ2} →

{n :Int | γ3} and Ty = {n :Int |n > w}:

n : Int ` γ1 ⇒ γ3

x : {n :Int | γ1}, n : Int ` γ3 ⇒ γ2

id : Tid, n : Int ` (n = 0) ⇒ (n = 0)

id : Tid, w : {n :Int |n = 0}, n : Int ` (n = 3) ⇒ (n > w)

id : Tid, w : {n :Int |n = 0}, y : Ty, n : Int ` (n > w) ⇒ γ1

id : Tid, w : {n :Int |n = 0}, y : Ty, n : Int ` [x 7→ y : {n :Int | γ1}] · γ2 ⇒ γ1
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3.4 Satisfiability

The final phase of type reconstruction solves the residual implication constraint

set P by finding a placeholder replacement that preserves satisfiability. To simplify the

proofs, we argue assuming that environments are quantified over well typed terms,

making explicit the previously abstract implication relation.

Our approach is based on the intuition that implications are essentially dataflow

paths that carry the specifications of data sources (constants and function post-conditions)

to the requirements of data sinks (function pre-conditions), with placeholders function-

ing as intermediate nodes in the dataflow graph. Thus, if a placeholder γ appears on

the right-hand side of two implication constraints E ` p ⇒ γ and E ` q ⇒ γ, then

our replacement for γ is simply the disjunction p ∨ q (the strongest consequence) of

these two lower bounds. Our algorithm repeatedly applies this transformation until no

placeholders remain, but several difficulties arise:

1. p or q may contain variables that cannot appear in a solution for γ

2. γ may have a delayed substitution

3. γ may appear in p or q

To help resolve these issues, we extend the language with the following terms.

s, t ∈ Term ::= · · · | t ∨ t | t ∧ t | ∃x : T. t

The parallel disjunction t1 ∨ t2 (respectively conjunction t1 ∧ t2) evaluates t1

and t2 nondeterministically, reducing to true (resp. false) if either of them reduces
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Figure 3.3: Additional Evaluation Rules

true ∨ t −→ true [E-Or-L]

t ∨ true −→ true [E-Or-R]

false ∨ false −→ false [E-Or-F]

false ∧ t −→ false [E-And-L]

t ∧ false −→ false [E-And-R]

true ∧ true −→ true [E-And-T]

∃x : T. t −→ t[x 7→ s : T ] if ∅ ` s : T [E-Exists]

C ::= · · · | t ∨ • | • ∨t | • ∧t | t ∧ •

to true (resp. false). The existential term ∃x : T. t binds x in t, and evaluates by

nondeterministically replacing x with a closed term of type T . The evaluation rules are

summarized in Figure 3.3. These additions are relatively unsurprising, considering their

importance in computability and topology of data types [Escardo 2004].

3.4.1 Free Variable Elimination

In our example program, the type variable α1 appeared in the empty environ-

ment and π(α1) = {n :Int | γ1}, so the solution for γ1 should be a well-formed boolean

expression in the environment n : Int. The only variable that can appear in a solution

for γ1 is therefore n. But consider the following constraint over γ1:

id : Tid, w : {n :Int |n = 0}, y : Ty, n : Int ` (n > w) ⇒ γ1

Since id, w, and y cannot appear in a solution for γ1, we rewrite this constraint as

n : Int ` (∃id : Tid. ∃w : {n :Int |n = 0}. ∃y : Ty. n > w) ⇒ γ1

60



In general, each placeholder γ introduced by shape reconstruction has an as-

sociated environment Eγ in which it must have type Bool. This gives us a reasonable

definition for the free variables of a placeholder (with its associated delayed subtitution):

fv(θ · γ) = (dom(Eγ) \ dom(θ)) ∪ fv(rng(θ))

We then rewrite each implication constraint E, y : T ` p ⇒ q where y 6∈ fv(q) into the

constraint E ` (∃y : T. p) ⇒ q. This transformation is semantics-preserving (Lemma

22)

For the proof of this fact, let us define closing substitutions. We say E |= σ if

for every x in E, ` σ(x) : σ(E(x)). Then a predicate is valid if and only if it evaluates

to true for all closing substitutions.

Lemma 22 For y /∈ fv(q), E, y : T ` p ⇒ q if and only if E ` (∃y : T. p) ⇒ q

Proof: (⇒) Suppose E, y : T ` p ⇒ q and y 6∈ fv(q) and consider any σ

such that E |= σ and σ(∃y : T. p)  ∗ true. Then there is some t such that ∅ ` t : T

and σ(∃y : T. p) σ([x 7→ t : T ]p) ∗ true.

Let σ′ = (σ, y := t); clearly E, y : T |= σ′. Then by assumption, σ(p)  ∗

true implies σ(q)  ∗ true. Since y /∈ fv(q), σ′(q) = σ(q), and we have proved

E ` ∃y : T. p ⇒ q.

(⇐) Conversely, suppose E ` ∃y : T. p ⇒ q where y 6∈ fv(q) and consider σ

such that E, y : T |= σ and σ(p) ∗ true.

Clearly we can ignore σ(y), so E |= σ, and the nondeterministic existential

can replace y with σ(y), so σ(∃y : T. p) ∗ σ(p) ∗ true. By assumption, this implies
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that σ(q) ∗ true, and we have proved E, y : T ` p ⇒ q. �

Repeatedly applying this transformation, we rewrite each implication con-

straint until the domain of the environment (and hence the free variables of the left-hand

side) is a subset of the free variables of the right-hand side.

3.4.2 Delayed Substitution Elimination

The next issue is the presence of delayed substitutions in constraints of the

form E ` p ⇒ θ · γ. To eliminate the delayed substitution θ we first split it into an

environment env(θ) and a term [[θ]]:

env([ ]) = ∅

env([x 7→ t : T ], θ) = x : T, env(θ)

[[ [ ] ]] = true

[[ [x 7→ t : T ], θ ]] = (x = t) ∧ [[θ]]

The environment env(θ) binds all the variables in dom(θ) while the term [[θ]] represents

the semantic content of θ.

We then transform the constraint E ` p ⇒ θ · γ into E, env(θ) ` [[θ]] ∧ p ⇒ γ.

But we can rewrite the constraint even more cleanly: E must be some prefix of Eγ since

by the previous transformation dom(E) ⊆ fv(θ · γ) ⊆ dom(Eγ). Any x ∈ dom(θ) such

that x 6∈ dom(Eγ) can be dropped from θ and we see that E, env(θ) is then exactly Eγ .

So our constraint is

Eγ ` [[θ]] ∧ p ⇒ γ

To prove this transformation correct, we use the following well formedness

judgement E `wf θ which distinguishes those delayed substitutions that may actually
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occur in context E.

E `wf [ ]

[WF-Empy]
E ` t : T E, x : T `wf θ′

E `wf [x 7→ t : T ], θ′
[WF-Ext]

Lemma 23 If E |= σE and σEF |= σF , where dom(σE) = dom(E) and dom(σF ) =

dom(F ), then E,F |= σE , σF

Proof: Consider a variable x ∈ dom(E,F ). If x ∈ dom(E) then the lemma

is trivial. If x ∈ dom(F ), then (σEσF )(x) = σF (x) which has type σF (σEF )(x) by

assumption, which is (σE , σF )((E,F )(x)). �

Lemma 24 If E |= σ and E `wf θ then σ(env(θ)) |= σ(θ)

Proof: Consider any x ∈ dom(θ) = dom(E). By assumption, ` σ(x) :

σ(E(x)), but because E `wf θ we know (by a trivial induction) that σ(E(x)) =

σ(env(θ)(x)). �

Lemma 25 Suppose ρ is a placeholder replacement such that ρ(E) `wf ρ(θ). Then ρ

satisfies E ` p ⇒ θ · γ if and only if ρ satisfies E, env(θ) ` [[θ]] ∧ p ⇒ γ

Proof: Assume throughout that ρE `wf ρθ

(⇒) Suppose ρ satisfies E ` p ⇒ θ · γ, i.e. ρE ` ρp ⇒ ρθ(ργ) and consider

any σ s.t. ρE, env(ρθ) |= σ and σ(ρ([[θ]] ∧ p))  ∗ true. Then by definition of the

conjunction we know that σ(ρp)  ∗ true, hence σ(ρ(θ · γ))  ∗ true by assumption,

which is σ(ρθ(ργ)) ∗ true.
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But since σ is a closing substitution for ρ(E, env(θ)), we know for any x ∈

dom(θ) that σ(x) = (ρθ)(x) hence σ(ργ) = σ(ρθ(ργ)), which we already know evaluates

to true. Hence ρ satisfies E, env(θ) ` [[θ]] ∧ p ⇒ γ.

(⇐): Suppose ρ satisfies E, env(θ) ` [[θ]] ∧ p ⇒ γ i.e. ρE, env(ρθ) ` ρ([[θ]] ∧ p) ⇒

ργ and consider any σ s.t. ρE |= σ and σ(ρp)  ∗ true. Let σ′ = σ ◦ (ρθ); note that

ρE, env(ρθ) |= σ′ by Lemmas 23 and Lemma 24.

Obviously, σ′(ρp)  ∗ true since dom(θ) ∩ fv(p) = ∅. Furthermore, by in-

tensional equality, we see that σ′([[θ]])  ∗ true. So the conjunction in our assumption

evaluates to true, and we infer that σ′(ργ) ∗ true.

But σ′(ργ) = σ(ρθ(ργ)) which is exactly what we need to conclude that ρ

satisfies E ` p ⇒ θ · γ �

3.4.3 Placeholder Solution

After the previous transformations, all lower bounds of a placeholder γ appear

in constraints of the form

Eγ ` pi ⇒ γ

for i ∈ {1..n}, assuming γ has n lower bounds. We want to set γ equal to the parallel

disjunction p1 ∨ p2 ∨ · · · ∨ pn of all its lower bounds (the disjunction must be parallel

because some subterms may be nonterminating). However, γ may appear in some pi

due to recursion or self-composition of a function. In this case we use a least fixed

point operator, conveniently already available in our language, to find a solution to the

equation γ = p1 ∨ · · · ∨ pn.
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More formally, suppose Eγ = x1 : T1, · · · , xk : Tk. Then γ is a predicate over

x1 · · ·xk and we can interpret it as a function Fγ : T1 → · · · → Tk → Bool. We use the

following notation for clarity:

T̄ → Bool ≡ T1 → T2 → · · · → Tk → Bool

λx̄ : T̄ . t ≡ λx1 :T1. λx2 :T2. · · ·λxk :Tk. t

f x̄ ≡ f x1 x2 · · · xk

The function Fγ can then be defined as the following least fixed point computation:

Fγ = fixT̄→Bool (λf : T̄ → Bool. λx̄ : T̄ . [γ 7→ f x̄](p1 ∨ · · · ∨ pn))

Our solution for γ is LB(γ) = Fγ x̄. This is the strongest consequence that

is implied by all lower bounds of γ and is in some sense canonical, analogously to the

strongest postcondition of a code block.

Lemma 26 If a placeholder replacement ρ satisfies P , then ρ satisfies Eγ ` LB(γ) ⇒ γ.

Proof: Consider any ρ satisfying P and σ such that ρEγ |= σ and σρ(LB(γ)) ∗

true minimal k. Since the possible nondeterministic evaluations of σρLB(γ) correspond

to simultaneously evaluating all lower bounds for γ simultaneously, one of them must

eventually evaluate to true. Then by the assumption that ρ satisfies P , we know that

σργ  ∗ true. �

The result of equisatisfiability follows from the fact that we have chosen the

strongest possible solution for γ.

Lemma 27 P is satisfiable if and only if P [γ := LB(γ)] is satisfiable.
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Proof: (⇒): Consider any ρ : PlaceHolders → Terms that satisfies P . By

Lemma 26 if ρ(γ) ⇒ p occurs in P , then LB(γ) ⇒ ρ(γ) ⇒ p; covariant occurences

of γ in environments are analogous. If p ⇒ ρ(γ) occurs in P , then p ⇒ LB(γ) by

construction of LB(γ); contravariant occurences of types in environments do not affect

satisfiability. �

In our example, the only lower bound of γ3 is γ1 and the only lower bound of

γ2 is γ3, so let us set γ3 := γ1 and γ2 := γ3 in order to discuss the more interesting

solution for γ1. The resulting unsatisfied constraints (simplified for clarity) are:

n : Int ` ∃w : {n :Int |n = 0}. (n > w) ⇒ γ1

n : Int ` ∃w : {n :Int |n = 0}. ∃y : {n :Int |n > w}. [x := y] · γ1 ⇒ γ1

The exact text of LB(γ1) is too large to print here, but it is equivalent to

∃w : {n :Int |n = 0}. (n > w) and thus equivalent to (n > 0). The resulting explicitly

typed program (simplified according to the previous sentence’s discussion) is:

let id : (x :{n :Int |n > 0} → {n :Int |n > 0}) = λx :{n :Int |n > 0}. x in

let w : {n :Int |n = 0} = 0 in

let y : {n :Int |n > w} = 3 in

id (id y)

3.5 Type Reconstruction is Typability-Preserving

The output of our algorithm is the composition of the type replacement re-

turned by shape reconstruction and the placeholder replacement returned by the satis-

fiability routine. Application of this composed replacement is a typeability-preserving
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transformation. Moreover, for any typeable program, the algorithm succeeds in produc-

ing such a replacement.

Theorem 28 For any λH program t, one of the following occurs:

1. Type reconstruction fails, in which case t is untypeable, or

2. Type reconstruction returns a type replacement π such that t is typeable if and only

if π(t) is well typed.

Proof:

Case 1: Only shape reconstruction can fail. If it does, then by Lemma 21 the subtyping

constraints are unsatisfiable. Then by Lemma 20, t is not typeable.

Case 2: Type reconstruction solved constraints that were faithful, by Lemma 20. Thus

by Lemma 21 we have π and by Lemma 27 we have ρ such that (ρ ◦ π)(t) is

typeable (well typed) if and only if t is typeable. �

3.6 Related Work

Freeman and Pfenning [1991] introduced datasort refinements, which express

restrictions on the recursive structure of algebraic datatypes. Type reconstruction for

the finite set of programmer-specified datasort refinements is decided by abstract in-

terpretation. Hayashi [1993] and Denney [1998] explored various logics for refinement

predicates, while Davies and Pfenning [2000], and Mandelbaum et al. [2003] combined

67



refinements with computational effects. All of these systems require type annotations,

though many perform some manner of local type inference [Pierce and Turner 1998].

Xi and Pfenning [1999] developed Dependent ML, which uses dependent types

along with index types to express invariants for complex data structures such as red-

black trees. Dependent ML solves systems of linear inequalities to infer a restricted

class of type indices. Dunfield [2002] combined index types and datasort refinements

in a system with decidable type checking, but the programmer is required to provide

sufficient type annotations to guide the type checking process.

In the system of Ou et al. [2004], a section of code may be dynamically typed in

order to reduce the annotation burden of refinement types. For the static dependently

typed portion of a program, they forbid recursive functions in refinement predicates to

ensure decidability of type checking, and perform no type reconstruction.

Constraint-based type reconstruction for systems with subtyping is a tremen-

dously broad topic, and we cannot fully review it here. The problem is studied in some

generality by Mitchell [1983], Fuh and Mishra [1988], Lincoln and Mitchell [1992], Aiken

and Wimmers [1993], and Hoang and Mitchell [1995]. Type inference systems parame-

terized by a subtyping constraint system are developed by Pottier [1996] and Odersky

et al. [1999]. This work is complementary to generalized systems in that it focuses

on the solution of our particular instantiation of subtyping constraints; we also do not

investigate parametric polymorphism, which is included in the mentioned frameworks.

Set-based analysis presents many similar ideas, and we draw inspiration from the works

of Heintze [1992], Cousot and Cousot [1995], Fähndrich and Aiken [1996], and Flanagan
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and Felleisen [1997].

The precondition/postcondition discipline for imperative programs dates back

to the work of Floyd [1967], C. A. R. Hoare [1969], and Dijkstra [1976]. General refine-

ment types apply similar ideas to functional, higher order, programs. Our transforma-

tion of predicates to infer refinements resembles and is inspired by Dijkstra’s weakest

precondition calculation but is most closely related to the related strongest postcondi-

tion defined by Back [1988]. Nanevski et al. [2006] have introduced another relationship

between axiomatic semantics and type systems with their Hoare Type Theory, which

adds pre- and postconditions to the types of effectful monadic computation.
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